• Title/Summary/Keyword: 3-D finite difference method

Search Result 265, Processing Time 0.027 seconds

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane (유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Gun-Su;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, the effect of a finite substrate on the mutual coupling of a pair of microstrip patch antennas along the H -plane is investigated. The mutual coupling of a pair of microstrip patch antennas can be reduced using the interference effect due to the phase difference by a variety of routes of the surface wave. In the case of the substrate with $\varepsilon_r$=10 and thickness of 3.2 mm, the mutual coupling is reduced by 4.85 dB on the substrate size with the strong mutual coupling, while the mutual coupling is reduced by 34.28 dB on the substrate size with the weak mutual coupling when the distance between the antenna centers is varied from 0.5 $\lambda_0$ to 1.0 $\lambda_0$. In the case of optimization substrate size, the decreasing rate of the mutual coupling with the increase of the distance between the antenna centers is very large. Good agreements between the image method and full wave simulation results are obtained.

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Finite Element Analysis for Forming Processes of $\OMEGA$ -Type Bellows Tubes (오메가형 벨로즈관의 성형공정을 위한 유한요소해석)

  • Lee, Junghoon;Kim, Naksoo;Jeon, Byunghee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.85-90
    • /
    • 1997
  • The study presents a computer-aided analysis and its design for the forming process of .OMEGA. -type bellows tubes. Finite element analysis was carried out to perform the process simulation. Bsed on the analytic results of various conditions, the forming conditions used for angled U-type bellows tubes were determined. The 3-D modeling was constructed by I-DEAS and the process simulation was constructed by PAM- STAMP. It is concluded that the difference of height between die and bellows during the forming process causes a non-uniform shape of the bellows and also influences .OMEGA. -shape. These results can be utilized for the process design.

  • PDF

FDTD Modeling of the Korean Human Head using MRI Images (MRI 영상을 이용한 한국인 인체 두부의 FDTD 모델링)

  • 이재용;명노훈;최명선;오학태;홍수원;김기회
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.582-591
    • /
    • 2000
  • In this paper, the Finite-Difference Time-Domain(FDTD) modeling method of the Korean human head is introduced to calculate electromagnetic energy absorption for the human head by mobile phones. After MRI scanning data is obtained, 2 dimensional(2D) segmentation is done from the 2D MRI image data by the semi-automatic method. Then, 3D dense segmentation data with $1mm\times1mm\times1mm$ is constructed from the 2D segmentation data. Using the 3D segmentation data, coarse FDTD models of human head that is tilted arbitrarily to model the condition of tilted usage of mobile phone.

  • PDF

Numerical Analysis of the Mechanical and Hydraulic behavior of Concrete Plug in Underground Storage Cavern (지하저장공동에서의 콘크리트 플러그의 역학적 및 수리적 거동에 관한 수치해석적 연구)

  • 박병기;이희근;전석원;박의섭
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.344-354
    • /
    • 2000
  • The concrete plug in an underground cavern prevents the stored product (oil, gas, etc) from leaking and the excessive inflow of underground water, so it plays an important role in construction and operation of the storage cavern. Additionally, it should maintain its stability under every possible loading condition. Once the plug is constructed, the cavern is isolated from the external access. Therefore, mechanical and hydraulic consideration should be made in construction to fulfill its function. Therefore, in this study, numerical analyses were conducted to study the optimal shape and thickness of the plug with respect to the various conditions of installation depth, the shape of the plug, in-situ stress ratio (K), the condition of rock-plug interface, and the effect of Excavation Damaged Zone (EDZ). This paper also presents the effect of slot depth on the hydraulic behavior of the plug. These analyses were carried out by using the 2-dimensional finite difference code, rm FLAC, and the 3D code, rm FLAC$\^$3D/.

  • PDF

Shape Optimization of Piezoelectric Materials for Piezoelectric-Structure-Acoustic System (압전-구조-음향 연성계의 압전 액츄에이터 최적설계)

  • Wang, Se-Myung;Lee, Kang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1627-1632
    • /
    • 2000
  • Recently, piezoelectric materials have attracted considerable attention because of its self-sensing and actuating properties. To model smart structures, numerical modeling of structures with piezoelectric devices is essential. As many factors affect the performance of smart structures, optimization of these parameters is necessary. In this paper, the shape design sensitivity analysis of the 3D piezoelectric and structural elements is developed and shape optimization is performed. For the evaluation of the sensitivity, the finite element method is used. For the shape sensitivity, the domain velocity field is calculated. An acoustic cavity model is presented as a numerical example to study the feasibility of the formulation. The continuum sensitivity is compared with the results of the finite difference method by ANSYS. And the sequential linear programming (SLP) algorithm is used as the optimization algorithm.

  • PDF

Subcell Maxwell-Boltzmann FDTD Method for Analyzing Thin Plasma Layer (얇은 플라즈마 층의 전자기 해석을 위한 Subcell 맥스웰-볼츠만 유한 차분 시간 영역 기법)

  • Jung, Inkyun;Kim, Yuna;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.326-332
    • /
    • 2015
  • Analyzing electromagnetic properties in plasma medium, it is difficult to numerically solve electromagnetic problem with thin plasma. In this paper, subcell Maxwell-Boltzmann FDTD method was proposed which is combined with Maxwell-Boltzmann FDTD and subcell FDTD method for analyzing plasma and electrically thin materials, respectively. Calculations of reflection coefficient and absorption rate error were performed by using 1D FDTD method. Reflection coefficient computed by applying the proposed method is in agreement with analytic solution. Absorption rate error analyzed by employing the proposed method is 1/10 times less than one by using conventional method.

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

Numerical Analysis of the Mechanical and Hydraulic behavior of Concrete Plug in Underground Storage Cavern (지하저장공동에서의 콘크리트 플러그의 역학적 및 수리적 거동에 관한 수치해석적 연구)

  • 박병기;이희근;전석원;박의섭
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.93-103
    • /
    • 2000
  • The concrete plug in an underground cavern prevents the stored product (oil, gas, etc) from leaking and the excessive show of underground water, so it plays an important role in construction and operation of the storage cavern. Additionally, it should maintain its stability under every possible loading condition. Once the plug is constructed, the cavern is isolated from the external access. Therefore, mechanical and hydraulic consideration should be made in construction to fulfill its function. Therefore, in this study, numerical analyses were conducted to study the optimal shape and thickness of the plug with respect to the various conditions of installation depth, the shape of the plug, in-situ stress ratio (K), the condition of rock-plug interface, and the effect of Excavation Damaged Zone (EDZ). This paper also presents the effect of slot depth on the hydraulic behavior of the plug. These analyses were carried out by using the 2-dimensional finite difference code, rm FLAC, and the 3D code, m FLA $C^{3D}$./.

  • PDF

Wide-Band T-Shaped Microstrip-Fed Twin-Slot Array Antenna

  • Jang, Yong-Woong
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • A numerical simulation and an experimental implementation of T-shaped microstrip-fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite-difference time-domain (FDTD) method. The dependence of design parameters on the bandwidth characteristics is investigated. The measured bandwidth of twin-slot array antenna is from 1.37 GHz to 2.388 GHz, which is approximately 53.9 % for return loss less than or equal to -10 dB. The bandwidth of twin-slot is about 1.06 % larger than that of single-slot antenna. The measured results are in good agreement with the FDTD results.

  • PDF