DOI QR코드

DOI QR Code

Subcell Maxwell-Boltzmann FDTD Method for Analyzing Thin Plasma Layer

얇은 플라즈마 층의 전자기 해석을 위한 Subcell 맥스웰-볼츠만 유한 차분 시간 영역 기법

  • Jung, Inkyun (Department of Electrical and Electronics Engineering, Yonsei University) ;
  • Kim, Yuna (Department of Electrical and Electronics Engineering, Yonsei University) ;
  • Hong, Yongjun (Agency for Defense Development) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronics Engineering, Yonsei University)
  • Received : 2015.01.05
  • Accepted : 2015.02.12
  • Published : 2015.03.31

Abstract

Analyzing electromagnetic properties in plasma medium, it is difficult to numerically solve electromagnetic problem with thin plasma. In this paper, subcell Maxwell-Boltzmann FDTD method was proposed which is combined with Maxwell-Boltzmann FDTD and subcell FDTD method for analyzing plasma and electrically thin materials, respectively. Calculations of reflection coefficient and absorption rate error were performed by using 1D FDTD method. Reflection coefficient computed by applying the proposed method is in agreement with analytic solution. Absorption rate error analyzed by employing the proposed method is 1/10 times less than one by using conventional method.

플라즈마의 전자기적 특성을 해석하는 데 전기적으로 얇은 플라즈마는 수치 해석하기 어렵다. 본 논문은 플라즈마를 해석할 수 있는 맥스웰-볼츠만 유한 차분 시간 영역(Finite-Difference Time-Domain: FDTD) 기법과 얇은 구조를 해석할 수 있는 subcell FDTD 기법을 결합한 subcell 맥스웰-볼츠만 FDTD 기법을 제안하였다. 제안한 기법의 정확성을 확인하기 위해 1차원 FDTD 기법을 이용하여 자유 공간-플라즈마-완전 도체에서 반사계수 및 흡수량 오차를 계산하였다. 제안한 기법을 이용했을 때 광대역에서 정확한 것을 확인하였고, 플라즈마가 $3{\Delta}y$일 때 기존 기법보다 흡수량 오차가 1/10로 감소하는 것을 확인하였다.

Keywords

References

  1. I. P. Shkarofsky, The Particle Kinetics of Plasmas, Massachuestts, Addision-Wesley, 1966.
  2. J. L. Young, "A full finite difference time domain implementation for radio wave propagation in a plasma", Radio Sci., vol. 29, no. 6, pp. 1513-1522, 1994. https://doi.org/10.1029/94RS01921
  3. G. Cerri, F. Moglie, R. Montesi, P, Russo, and E. Vecchioni, "FDTD solution of the Maxwell-Botzmann system for electromagnetic wave propagation in a plasma", IEEE Trans. Antenna. Propag., vol. 56, no. 8, pp. 2584-2558, Aug. 2008. https://doi.org/10.1109/TAP.2008.927505
  4. I. Y. Oh, Y. Hong, and J. G. Yook, "Extremely low dispersion higher order(2,4) 2-D-FDTD scheme for Maxwell-Boltzmann system", IEEE Trans. Antenna. Propag., vol. 61, no. 12, pp. 6100-6106, Dec. 2013. https://doi.org/10.1109/TAP.2013.2281363
  5. K. S. Yee, "Numerical solution of intial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antenna. Propag., vol. 14, no. 3, pp. 302-307, 1966. https://doi.org/10.1109/TAP.1966.1138693
  6. 김유나, 오일영, 정인균, 홍용준, 육종관, "유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석", 한국전자파학회논문지, 25(8), pp. 857-863, 2014년 8월. https://doi.org/10.5515/KJKIEES.2014.25.8.857
  7. 이수민, 오일영, 홍용준, 육종관, "유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석", 한국전자파학회논문지, 24(3), pp. 324-330, 2013년 3월. https://doi.org/10.5515/KJKIEES.2013.24.3.324
  8. A. Taflove, S. C. Hagness, Computational Electrodynamics, Artech House, 2005.
  9. C. Penny, R. J. Luebbers, and J. W, Schuster, "Scattering from coated targets using a frequency-dependent, surface impedance boundary condition in FDTD", IEEE Trans. Antenna. Propag., vol. 56, no. 8, pp. 434-443, Apr. 1996.
  10. M. K. Karkkainen, "Subcell FDTD modeling of electrically thin dispersive layers", IEEE Trans. Microwave Theory Tech., vol. 51, no. 6, pp. 1774-1780, 2003. https://doi.org/10.1109/TMTT.2003.812584
  11. R. Courant, K. Firedrichs, and H. Lewy, "On the partial difference equations of mathematical physics", IBM J. Res. Dev., vol. 11, no. 2, pp. 215-234, Mar. 1967. https://doi.org/10.1147/rd.112.0215
  12. S. A. Cummer, "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy", IEEE Trans. Antenna Propag., vol. 45, no. 3, pp. 392-400, Mar. 1997. https://doi.org/10.1109/8.558654
  13. Y. Zhao, P. Belov, and Y. Hao, "Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries", J. Opt. A: Pure Appl. Opt., vol. 9, pp. S468-475, 2007. https://doi.org/10.1088/1464-4258/9/9/S31