• Title/Summary/Keyword: 3-D elastic theory

Search Result 101, Processing Time 0.025 seconds

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates

  • Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.621-640
    • /
    • 2021
  • Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.

Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.509-524
    • /
    • 2017
  • In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh;Mellal, Fatma;Nebab, Mokhtar;Fourn, Hocine;Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Hussain, Muzamal
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.447-460
    • /
    • 2022
  • In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory

  • Guerroudj, Hicham Zakaria;Yeghnem, Redha;Kaci, Abdelhakim;Zaoui, Fatima Zohra;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2018
  • This research investigates the free vibration analysis of advanced composite plates such as functionally graded plates (FGPs) resting on a two-parameter elastic foundations using a hybrid quasi-3D (trigonometric as well as polynomial) higher-order shear deformation theory (HSDT). This present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by a sinusoidal and parabolic variation of all displacements across the thickness. Governing equations of motion for FGM plates are derived from Hamilton's principle. The closed form solutions are obtained by using Navier technique, and natural frequencies are found, for simply supported plates, by solving the results of eigenvalue problems. The accuracy of the present method is verified by comparing the obtained results with First-order shear deformation theory, and other predicted by quasi-3D higher-order shear deformation theories. It can be concluded that the proposed theory is efficient and simple in predicting the natural frequencies of functionally graded plates on elastic foundations.

A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation

  • Benahmed, Abdelkarim;Houari, Mohammed Sid Ahmed;Benyoucef, Samir;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.9-34
    • /
    • 2017
  • In this work, an efficient and simple quasi-3D hyperbolic shear deformation theory is developed for bending and vibration analyses of functionally graded (FG) plates resting on two-parameter elastic foundation. The significant feature of this theory is that, in addition to including the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The foundation is described by the Pasternak (two-parameter) model. The material properties of the plate are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. Equations of motion for thick FG plates are obtained within the Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The numerical results are given in detail and compared with the existing works such as 3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates resting on elastic foundation.

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.