• Title/Summary/Keyword: 3-D dose distribution

Search Result 188, Processing Time 0.039 seconds

Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue (Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가)

  • Oh, Hye Gyung;Son, Sang Jun;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate beam delivery accuracy for small sized lung SBRT through experiment. In order to assess the accuracy, Eclipse TPS(Treatment planning system) equipped Acuros XB and radiochromic film were used for the dose distribution. Comparing calculated and measured dose distribution, evaluated the margin for PTV(Planning target volume) in lung tissue. Materials and Methods : Acquiring CT images for Rando phantom, planned virtual target volume by size(diameter 2, 3, 4, 5 cm) in right lung. All plans were normalized to the target Volume=prescribed 95 % with 6MV FFF VMAT 2 Arc. To compare with calculated and measured dose distribution, film was inserted in rando phantom and irradiated in axial direction. The indexes of evaluation are percentage difference(%Diff) for absolute dose, RMSE(Root-mean-square-error) value for relative dose, coverage ratio and average dose in PTV. Results: The maximum difference at center point was -4.65 % in diameter 2 cm size. And the RMSE value between the calculated and measured off-axis dose distribution indicated that the measured dose distribution in diameter 2 cm was different from calculated and inaccurate compare to diameter 5 cm. In addition, Distance prescribed 95 % dose($D_{95}$) in diameter 2 cm was not covered in PTV and average dose value was lowest in all sizes. Conclusion: This study demonstrated that small sized PTV was not enough covered with prescribed dose in low density lung tissue. All indexes of experimental results in diameter 2 cm were much different from other sizes. It is showed that minimized PTV is not accurate and affects the results of radiation therapy. It is considered that extended margin at small PTV in low density lung tissue for enhancing target center dose is necessary and don't need to constraint Maximum dose in optimization.

A Study of Total Dose in Intensity Modulation Radiation Therapy (선량강도 조절법을 이용한 방사선치료에서 총선량에 관한 고찰)

  • 김성규
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.85-90
    • /
    • 2000
  • In radiation therapy, the effects of radiation are decided total dose, total treatment times and number of radiation dose fractions. We considered that total dose, total treatment times and number of radiation dose fractions in intensity modulation radiation therapy(IMRT) infuence tumor cell killing. The goal of three dimensional conformal radiation therapy(3DCRT) in radiation therapy is to conform the partial distribution of the prescribed radiation dose to the precise 3D configuration of the tumor, and at the same time, to minimize the dose to the surrounding normal tissues. To optimize treatment volume of tumor, treatment volume will be same tumor volume. All IMRT compare to conventional treatment plus boost IMRT when total dose irradiated 75 - 90 Gy. Because of biological effect, total dose are decreased 12.5 - l5Gy in all IMRT.

  • PDF

A Study on a Comparative Analysis of 2D and 3D Planning Using CT Simulator for Transbronchial Brachytherapy (전산화단층모의치료기를 이용한 경기관지 근접치료환자의 치료계획에 관한 고찰)

  • Seo, Dong Rin;Kim, Dae Sup;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Purpose: Transbronchial brachytherapy used in the two-dimensional treatment planning difficult to identify the location of the tumor in the affected area to determine the process analysis. In this study, we have done a comparative analysis for the patient's treatment planning using a CT simulator. Materials and Methods: The analysis was performed by the patients who visited the hospital to June 2012. The patient carried out CT-image by CT simulator, and we were plan to compare with a two-dimensional and threedimensional treatment planning using a Oncentra Brachy planning system (Nucletron, Netherland). Results: The location of the catheter was confirmed the each time on a treatment planning for fractionated transbronchial brachytherapy. GTV volumes were $3.5cm^3$ and $3.3cm^3$. Also easy to determine the dose distribution of the tumor, the errors of a dose delivery were confirmed dose distribution of the prescibed dose for GTV. In the first treatment was 92% and the second was 88%. Conclusion: In order to compensate for the problem through a two-dimensional treatment planning, it is necessary to be tested process for the accurate identification and analysis of the treatment volume and dose distribution. Quantitatively determine the dose delivery error process that is reflected to the treatment planning is required.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Dosimetric Comparison of Setup Errors in Intensity Modulated Radiation Therapy with Deep Inspiration Breath Holding in Breast Cancer Radiation Therapy (Deep Inspiration Breath Holding을 적용한 유방암 세기변조방사선치료 시 위치잡이오차 분석을 통한 선량 평가)

  • Ham, Il-Sik;Cho, Pyong-Kon;Jung, Kang-Kyo
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.137-143
    • /
    • 2019
  • The aim of this study was analyzed the setup error of breast cancer patients in intensity modulated radiation therapy(IMRT) with deep inspiration breath holding(DIBH) and was analyzed the dose distribution due to setup error. A total of 45 breast cancer cases were performed a retrospective clinical analysis of setup error. In addition, the re-treatment planning was carried by shifting the setup error from the isocenter at the treatment. Based on this, the dose distribution of PTV and OARs was compared and analyzed. The 3D error for small breast group and medium breast group and large breast group were 3.1 mm and 3.7 mm and 4.1 mm, respectively. The difference between the groups was statistically significant(P=0.003). DVH results showed HI, CI for the PTV difference between standard treatment plan and re-treatment plan of 14.4%, 4%. The difference in $D_5$ and $V_{20}$ of the ipsilateral lung was 5.6%, 13% respectively. The difference in $D_5$ and $V_5$ of the heart of right breast cancer patients was 6.8%, 8% respectively. The difference in $D_5$, $V_{20}$ of the heart of left breast cancer patients was 7.2%, 23.5% respectively. In this study, there was a significant association between breast size and significant setup error in breast cancer patients with DIBH. In addition, it was found that the dose distribution of the PTV and OARs varied according to the setup error.

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Monte Carlo Simulation of Phytosanitary Irradiation Treatment for Mangosteen Using MRI-based Geometry

  • Oh, Se-Yeol;Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • Purpose: Phytosanitary irradiation treatment can effectively control regulated pests while maintaining produce quality. The objective of this study was to establish the best irradiation treatment for mangosteen, a popular tropical fruit, using a Monte Carlo simulation. Methods: Magnetic resonance image (MRI) data were used to generate a 3-D geometry to simulate dose distributions in a mangosteen using a radiation transport code (MCNP5). Microsoft Excel with visual basic application (VBA) was used to divide the image data into seed, flesh, and rind. Radiation energies used for the simulation were 10 MeV (high-energy) and 1.35 MeV (low-energy) for the electron beam, 5 MeV for X-rays, and 1.25 MeV for gamma rays from Co-60. Results: At 5 MeV X-rays and 1.25 MeV gamma rays, all areas (seeds, flesh, and rind) were irradiated ranging from 0.3 ~ 0.7 kGy. The average doses decreased as the number of fruit increased. For a 10 MeV electron beam, the dose distribution was biased: the dose for the rind where the electrons entered was $0.45{\pm}0.03$ kGy and the other side was $0.24 {\pm}0.10$ kGy. Use of an electron kinetic energy absorber improved the dose distribution in mangosteens. For the 1.35 MeV electron beam, the dose was shown only in the rind on the irradiated side; no significant dose was found in the flesh or seeds. One rotation of the fruit while in front of the beam improved the dose distribution around the entire rind. Conclusion: These results are invaluable for determining the ideal irradiation conditions for phytosanitary irradiation treatment of tropical fruit.

Practical Virtual Compensator Design with Dynamic Multi-Leaf Collimator(dMLC) from Iso-Dose Distribution

  • Song, Ju-Young;Suh, Tae-Suk;Lee, Hyung-Koo;Choe, Bo-Young;Ahn, Seung-Do;Park, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Yi, Byong-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.129-132
    • /
    • 2002
  • The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view.

  • PDF

Evaluation of electron dose distribution obtained from ADAC Pinnacle system against measurement and Monte Carlo method for breast patients

  • Lee, S.;Lee, R.;Park, D.;S. Suh
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.82-82
    • /
    • 2003
  • Introduction: With the development of dose calculation algorithms for electron beams, 3D RTP systerns are available for electron beam dose distribution commercially. However, no studies evaluated the accuracy of dose calculation with ADAC Pinnacle system for electron beams. So, the accuracy of the ADAC system is investigated by comparing electron dose distributions from ADAC system against the BEAMnrc/DOSXYZnrc. Methods: A total of 33 breast cancer patients treated with 6, 9, and 12MeV electrons in our institution was selected for this study. The first part of this study is to compare the dose distributions of measurement, TPS and the BEAMnrc/DOSXYZnrc code in flat water phantom at gantry zero position and for a 10 ${\times}$ 10 $\textrm{cm}^2$ field. The second part is to evaluate the monitor unit obtained from measurement and TPS. Adding actual breast patient's irregular blocks to the first part, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and 3D RTP system. In addition, the dose distributions using blocks were compared between TPS and the BEAMnrc/DOSXYZnrc code. Finally, the effects of tissue inhomogeneities were studied by comparing dose distributions from Pinnacle and Monte Carlo method on CT data sets. Results: The dose distributions calculated using water phantom by the TPS and the BEAMnrc/ DOSXYZnrc code agreed well with measured data within 2% of the maximum dose. The maximum differences of monitor unit between measured and Pinnacle TPS in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. In real-patient cases, comparison of depth doses and lateral dose profiles calculated by the Pinnacle TPS, with BEAMnrc/DOSXYZnrc code has generally shown good agreement with relative difference less than +/-3%. Discussion: For comparisons of real-patient cases, the maximum differences between the TPS and BEAMnrc/DOSXYZnrc on CT data were 10%. These discrepancies were due in part to the inaccurate dose calculation of the TPS, so that it needs to be improved properly. Conclusions: On the basis of the results presented in this study, we can conclude that the ADAC Pinnacle system for electron beams is capable of giving results absolutely comparable to those of a Monte Carlo calculation.

  • PDF

Spinal Cord Partial Block Technique Using Dynamic MLC

  • Cho, Sam-Ju;Yi, Byong-Yong;Back, Geum-Mun;Lee, Sang wook;Ahn, Seung-Do;Kim, Jong-Hoon;Kwon, Soo-Il;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.138-140
    • /
    • 2002
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck (H&N) or the thorax region. Due to the fact that the cord is the elongated shaped structure, it is not an easy task to maintain the cord dose within the clinically acceptable dose range. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. Three dimension (3D) conformal beam directions, which minimize the coverage of the normal organs such as the lung and the parotid gland, were chosen. The PBT field shape for each field was designed to shield the spinal cord with the dMLC. The transmission factors were determined by the forward calculation method. The plan comparisons between the conventional 3D conformal therapy plan and the PTB plan were performed to evaluate the validity of this technique. The conformity index (CI) and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan always generated better results than the conventional 3D conformal plan. The PBT was proved to be useful for the H&N and thorax region.

  • PDF