• Title/Summary/Keyword: 3-D Stereoscopic

Search Result 526, Processing Time 0.025 seconds

Subjective evaluation of wide-viewing-angle stereoscopic contents in a dome theater

  • Yoon, H.;Abe, N.;Ohta, K.;Kawai, T.;Suzuki, S.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.153-158
    • /
    • 2011
  • This study was conducted for the purpose of evaluating the impressions gained by the members of the audience who have seen contents in a dome theater, based on their seating positions. Dome Theater Gaia provided the environment where the contents for evaluation were to be presented, and enquete (survey) was used as the investigative method. The survey results showed that the presentation of wide-viewing-angle three-dimensional (3D) contents proved effective in enhancing the 3D effect and the presence in a dome theater. Moreover, the study results confirmed that in relation to the impression evaluation of the contents for different seating positions, the optimal seating position varied according to the presentation method of the 3D and 2D contents.

Visual Comfort Enhancement of Auto-stereoscopic 3D Display using the Characteristic of Disparity Distribution (시차 분포 특성을 이용한 오토스테레오스코픽 3차원 디스플레이 시청 피로도 개선 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • Visual discomfort is a common problem in three-dimensional videos. Among the methods to overcome visual discomfort presented in current research, disparity adjustment methods provide little guidance in determining the condition for disparity control. We propose a diaprity adjustment based on the characteristics of disparity distribution on visual comfort, where the visual comfort level is used as the adjustment paramter, in parallax barrier type auto-stereoscopic 3D display. In this paper, we use the horizontal image shift method for disparity adjustment to enhance visual comfort. The speeded-up robust feature is used to estimate the disparity distribution of 3D sequences, and the required amount for disparity control is chosen based on the pre-defined characteristics of disparity distribution on visual comfort. To evaluate the performance of the proposed method, we used a 3D equipment. Subjective tests were conducted at the fixed optimal viewing distance. The results show that comfortable videos were generated based on the proposed disparity adjustment method.

Comparison of Velocity Fields of Wake behind a Propeller Using 2D PIV and stereoscopic PIV (2D PIV와 stereoscopic PIV 기법으로 측정한 프로펠러 후류의 속도장 비교 연구)

  • Paik Bu-Geun;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-26
    • /
    • 2002
  • The phase-averaged velocity fields of 3 dimensional turbulent wake behind a marine propeller measured by 2D PIV and stereoscopic PIV(SPIV) were compared directly. In-plane velocity fields obtained from the consecutive particle images captured by one camera in 2D PIV have perspective errors due to out-of-plane motion. However, the perspective errors can be removed by measuring three component velocity fields using SPIV method with two cameras. It is also necessary to measure three components velocity fields for the investigation of complicated near-wake behind the propeller for the suitable propeller design. 400 instantaneous velocity fields were measured for each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}C\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the downstream region. The phase-averaged velocity fields show the viscous wake developed along the blade surfaces and tip vortices were formed periodically. The perspective errors caused by the out-of-plane motion was estimated by the comparison of 2D PIV and SPIV results. The difference in the axial mean velocity fields measured by both techniques are nearly proportional to the mean out-of-plane velocity component which has large values in the regions of the tip and trailing vortices. The axial turbulence intensity measured by 2D PIV was overestimated since the out-of-plane velocity fluctuations influence the in-plane velocity vectors and increase the in-plane turbulence intensities.

  • PDF

3D Stereoscopic Image Production Techniques in accordance with moving Virtual Camera (가상카메라 이동에 따른 3차원 입체영상 제작에 관한 연구)

  • Lee, Jun-Sang;Lee, Im-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.337-343
    • /
    • 2012
  • The techniques of implementing 3D movie have been developed by stereoscopic representation methods of the scene based on human visual experience. Recently, though various novel approaches for stereo movies are proposed to produce realistic 3D image, more study have to be done for compensating keystone distortion which is generated by moving virtual camera. In this paper we propose a novel production technique which minimizes keystone distortion based on analyzing pixel distance, and is easily implemented on popular graphics environment. First, in graphics environment we categorize each objects as individual layers, and extract image data to produce 3D image. The comparison between each animation sequences from proposed and conventional production methods shows that our production technique well compensate the distortion.

Real-time Temporal Synchronization and Compensation in Stereoscopic Video (3D 입체 영상시스템의 좌-우 영상에 대한 실시간 동기 에러 검출 및 보정)

  • Kim, Giseok;Cho, Jae-Soo;Lee, Gwangsoon;Lee, Eung-Don
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.680-690
    • /
    • 2013
  • In this paper, we propose a real-time temporal synchronization and compensation algorithm in stereoscopic video. Many temporal asynchronies are caused in the video editing stage and due to different transmission delays. These temporal asynchronies can degrade the perceived 3D quality. The goal of temporal alignment is to detect and to measure the temporal asynchrony and recover synchronization of the two video streams. In order to recover synchronization of the two video streams, we developed a method to detect asynchronies between the left and the right video streams based on a novel spatiogram information, which is a richer representation, capturing not only the values of the pixels but their spatial relationships as well. The proposed novel spatiogram additionally includes the changes of the spatial color distribution. Furthermore, we propose a block-based method for detection of the pair frame instead of one frame-based method. Various 3D experiments demonstrate the effectiveness of the proposed method.

Stereoscopic Video Conversion Based on Image Motion Classification and Key-Motion Detection from a Two-Dimensional Image Sequence (영상 운동 분류와 키 운동 검출에 기반한 2차원 동영상의 입체 변환)

  • Lee, Kwan-Wook;Kim, Je-Dong;Kim, Man-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1086-1092
    • /
    • 2009
  • Stereoscopic conversion has been an important and challenging issue for many 3-D video applications. Usually, there are two different stereoscopic conversion approaches, i.e., image motion-based conversion that uses motion information and object-based conversion that partitions an image into moving or static foreground object(s) and background and then converts the foreground in a stereoscopic object. As well, since the input sequence is MPEG-1/2 compressed video, motion data stored in compressed bitstream are often unreliable and thus the image motion-based conversion might fail. To solve this problem, we present the utilization of key-motion that has the better accuracy of estimated or extracted motion information. To deal with diverse motion types, a transform space produced from motion vectors and color differences is introduced. A key-motion is determined from the transform space and its associated stereoscopic image is generated. Experimental results validate effectiveness and robustness of the proposed method.

A New Mapping Algorithm for Depth Perception in 3D Screen and Its Implementation (3차원 영상의 깊이 인식에 대한 매핑 알고리즘 구현)

  • Ham, Woon-Chul;Kim, Seung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.95-101
    • /
    • 2008
  • In this paper, we present a new smoothing algorithm for variable depth mapping for real time stereoscopic image for 3D display. Proposed algorithm is based on the physical concept, called Laplacian equation and we also discuss the mapping of the depth from scene to displayed image. The approach to solve the problem in stereoscopic image which we adopt in this paper is similar to multi-region algorithm which was proposed by N.Holliman. The main difference thing in our algorithm compared with the N.Holliman's multi-region algorithm is that we use the Laplacian equation by considering the distance between viewer and object. We implement the real time stereoscopic image generation method for OpenGL on the circular polarized LCD screen to demonstrate its real functioning in the visual sensory system in human brain. Even though we make and use artificial objects by using OpenGL to simulate the proposed algorithm we assure that this technology may be applied to stereoscopic camera system not only for personal computer system but also for public broad cast system.

A Development of Depth Budget Control Module for 3D Stereoscopic Image Contents (3차원 입체영상 콘텐츠 제작을 위한 깊이 제어 카메라 모듈 개발)

  • Seo, Chang-Ho;Youn, Joo-Sang;Seo, Jin-Seok;Kim, Nam-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.201-203
    • /
    • 2015
  • 편안한 3차원 입체영상 콘텐츠 제작을 위해선 시청 환경 조건에 부합하는 최적의 제작 방법을 필요로 한다. 현재의 입체영상 제작 과정은 경험자의 지식이나 시청자 실험에 기반 한 가이드라인들을 활용하고 있으나, 특정 제작 환경에 국한되어 있다. 보다 구체적이고 정량적인 가이드라인 도출을 위해선 다양한 카메라 제어 및 시청 환경 요소를 고려한 실험용 입체영상이 제작되고, 그 실험 영상을 기반으로 다양한 시청자 실험 데이터가 구축되어야 한다. 또한, 실험용 입체영상 제작은 단기간에 이루어지고, 실험 목적 변경에 따라 변화 요인을 수용할 수 있어야 한다. 본 논문에서는 다양한 실험용 입체영상 제작을 위해, 상업용 3D 게임 엔진 저작 툴(Unity3D)에서 운용되고, 깊이예산(Depth Budget) 제어가 쉽게 가능한 입체 카메라 모듈을 구현하고, 구현된 모듈을 활용한 입체영상의 제작 예를 보여준다.

  • PDF

Harmonization Algorithm to generate Stereoscopic VR Image

  • Khayotov, Mukhammadali;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.269-271
    • /
    • 2020
  • In this letter, we propose a novel approach for stitching stereoscopic panoramas. When stitching stereoscopic panoramas, the amount of depth retrieved is the most important factor to pay attention for. Also, it is very crucial to deliver the two left and right panoramas with the right depth information to deliver good 3D perception. However, when stitching the two panoramas independently using the state-of-the-art algorithms and methods, we do still have some inconsistencies with the disparity map retrieved from the panoramas. To overcome this problem, we propose a method that modifies the latest conventional algorithm by making the two panoramas dependent of one another. This brings two panoramas with a much more consistent disparity map that lets users fully immerse into a comfortable stereoscopic vision.

  • PDF

3D Stereoscopic Augmented Reality with a Monocular Camera (단안카메라 기반 삼차원 입체영상 증강현실)

  • Rho, Seungmin;Lee, Jinwoo;Hwang, Jae-In;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • This paper introduces an effective method for generating 3D stereoscopic images that gives immersive 3D experiences to viewers using mobile-based binocular HMDs. Most of previous AR systems with monocular cameras have a common limitation that the same real-world images are provided to the viewer's eyes without parallax. In this paper, based on the assumption that viewers focus on the marker in the scenario of marker based AR, we recovery the binocular disparity about a camera image and a virtual object using the pose information of the marker. The basic idea is to generate the binocular disparity for real-world images and a virtual object, where the images are placed on the 2D plane in 3D defined by the pose information of the marker. For non-marker areas in the images, we apply blur effects to reduce the visual discomfort by decreasing their sharpness. Our user studies show that the proposed method for 3D stereoscopic image provides high depth feeling to viewers compared to the previous binocular AR systems. The results show that our system provides high depth feelings, high sense of reality, and visual comfort, compared to the previous binocular AR systems.