• Title/Summary/Keyword: 3-D Shape Inspection

Search Result 80, Processing Time 0.03 seconds

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Basic Study on the Image Instrument of the Facial-form by the 3D-facial Scanner (얼굴스캐너를 활용한 안면형상 영상진단기의 기초 연구)

  • Kim, Gyeong-Cheol;Lee, Jeong-Won;Kim, Hoon;Shin, Soon-Shik;Lee, Hai-Woong;Lee, Yong-Tae;Chi, Gyoo-Yong;Kim, Jong-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.497-501
    • /
    • 2008
  • 3D facial scanner for an accurate analysis is measured precisely a distance in straight, a distance in curved line, an angle in 3D data, the area of surface. We can easy acquire 3D data by the method of 0.8sec in each scan with easy handling, simple merge to whole face, harmless and fast process. In the HyungSang medicine, the inspection of the facial shape includes the Dam(gall bladder) - Bang Kwang(urinary bladder) body, the Jung${\cdot}$Gi${\cdot}$Shin${\cdot}$Hyul, the six merdian types etc. And we will collect the evidence based date verifing in the HyungSang clinical medicine. As we will analyze the facial whole form and the size${\cdot}$length${\cdot}$angle of the facial part, put the facial form's standardization on a solid foundation.

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Restoration of the Chimi Excavated from the Busosan Temple Site in Buyeo and Study of Its Production Techniques (부여 부소산사지 출토 치미의 재 복원을 통한 제작기법)

  • Hwang, Hyunsung;Na, Ahyoung
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.1-22
    • /
    • 2022
  • A chimi(a roof ridge decoration) excavated from the Busosan Temple Site in Buyeo was restored in 1978 at the Buyeo Museum. The gypsum restoration material had deteriorated over time and part of it was seriously damaged and unable to bear the weight of the chimi. The chimi features traces of emergency treatment revealing that the inside of the body and some portions of the tail were reinforced several times using epoxy resin. A condition survey performed in preparation for its transfer for an exhibition found the lower body and wings of the chimi to be highly vulnerable and it was determined that the chimi needed further restoration. The dismantling of the chimi for restoration revealed several elements that provide clues to the production techniques applied by its makers, so they were subjected to inspection. This study explores the production techniques used in the chimi from the Busosan Temple Site that were revealed during the process of dismantling it for restoration. The chimi was inspected using 3D scanning and its rigid vertical shape was restored to a natural form based on the production techniques identified during the dismantling process. The existing restoration material was replaced to improve durability. 3D printed elements were produced based on 3D modelling and were joined to the original chimi to correct its shape and fill in the missing parts, restoring the chimi to its original appearance.

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

The Research for the Wide-Angle Lens Distortion Correction by Photogrammetry Techniques (사진측량 기법을 사용한 광각렌즈 왜곡보정에 관한 연구)

  • Kang, Jin-A;Park, Jae-Min;Kim, Byung-Guk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • General lens, widely using in Photogrammetry, has narrow view, and have to adjust "Image-Registration Method" after obtain images and it need cost; economic, period of time. Recent days, there is various study that use wide-angle lens, usually for robotics field, put to practical use in photogrammetry instead of general lens. In this studies, distortion tendency of wide-angle lens and utilize the correction techniques suitable to wide-angle lens by the existing photographic survey methods. After carrying out the calibration of the wide-angle lens, we calculated the correction parameters, and then developed the method that convert the original image-point to new image-point correcting distortion. For authorization the developed algorithm, we had inspection about shape and position; there are approximately 2D RMSE of 3 pixel, cx = 2, and cy = 3 different.

Three-dimensional evaluation of stone models made of various gypsum products (다양한 석고제품으로 제작한 석고 모형의 정확성의 평가: 3차원 이미지의 컴퓨터 지원 분석)

  • Kim, Wook Tae
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Purpose: This study is to evaluate the accuracy of gypsum replica models made from various gypsum products. Methods: One main model was made of stainless steel by CNC milling process. Molds were formed from the main model, and the gypsum replica models were made using 8 types of type IV gypsum, 10 pieces each. The main model was digitized by a contact scanner (Incise; Renishaw) and the gypsum replicas were digitized by an optical scanner (E4; 3Shape A/S). The difference between the main model and the gypsum replicas were measured by inspection software (3D Systems). One-way ANOVA was performed to evaluate the statistical significance of differences between groups. In addition, the independent sample T test was performed to determine the difference between the conventional and scannable stone group (n=10, α=0.05). Results: The root mean square of the stone models were 7.24 ㎛ to 10.78 ㎛, and statistical significance was found between the two groups (SR, FR) and the other 6 groups (IS, SG, CA, CS, ER, EBG) (p<0.05). The accuracy of the gypsum replicas was 9.04 ㎛ and 7.62 ㎛ in the conventional and scannable stone group, respectively. There was statistical significance between the two groups (p<0.01). Conclusion: In the limited results of this study, the product with low setting expansion and the scannable showed high accuracy. Therefore, in order to obtain a stable and accurate scan model, it is more effective in terms of accuracy to use a scannable stone with a low setting expansion.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.