• Title/Summary/Keyword: 3-D Digital Map

Search Result 305, Processing Time 0.037 seconds

A Study on the correcting and updating the Digital Map using Remotely Sensed Data (위성영상을 이용한 수치지도 수정/갱신 방안 연구)

  • 윤여상;김준철;박수영;최종현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.391-396
    • /
    • 2003
  • The digital map expresses natural topography and artificial things with 3D position coordinates in the computer such as the road, railway, building, river, mountain, paddy and dryland. Therefore, those should contribute to the information-oriented society by maintaining information and providing it to users quickly. However it is difficult to maintain the most recent topographic information all the time because of restricted budget and time. The purpose of this study is to investigate and analyze the updating area of the digital map using remotely sensed data, and to furnish the useful information reducing cost and time. To predict updating area of the digital map, we applied the urban changes analysis method to Landsat TM images from produced date of the digital map to up-to-date. Classification method for urban change analysis applied single band process algorithm. This study presents that updating area of the digital map is predicted by only the rate of 40% on total research area.

  • PDF

The Coordinate Transformation of Digital Geological Map in accordance with the World Geodetic System (A Case Study of Chungju and Hwanggang-ri Sheets using ArcToolbox) (수치지질도의 세계측지계 좌표변환 (ArcToolbox를 이용한 충주 및 황강리 도폭의 사례))

  • Oh, Hyun-Joo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.537-543
    • /
    • 2015
  • In Korea, the use of world geodetic system(WGS) has been mandated in year 2010. Accordingly, the national geographic information institute(NGIS) provides the digital maps according to the WGS. Nevertheless, most of the digital geological maps are still based on the Tokyo Datum(TD). Therefore, users should conduct 2D/3D geological spatial analysis after converting the coordinates of digital geological maps to WGS. The conversion process is often tedious and troublesome for certain users. Therefore, in this study, the method to transform coordinate from TD to WGS using ArcToolbox is introduced for users not familiar with the process. For a better appreciation, the Chungju and Hwanggang-ri digital sheets of 1:50,000 scale was chosen as an example. Here, Chungju and Hwanggang-ri sheets were defined based on the TD-central origin and TD-east origin, respectively. The two sheets were merged after the transformation of TD-east origin of Hwanggang-ri to the TD-central origin, and eventually transformed to WGS-central origin. The merged map was found to match exactly with the digital map(Daeso 367041). The problem of coordinate determination in previous digital geological maps was solved effectively. The proposed method is believed to be helpful to 2D/3D geological spatial analysis of various geological thematic maps.

A Study on the 3D Video Generation Technique using Multi-view and Depth Camera (다시점 카메라 및 depth 카메라를 이용한 3 차원 비디오 생성 기술 연구)

  • Um, Gi-Mun;Chang, Eun-Young;Hur, Nam-Ho;Lee, Soo-In
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.549-552
    • /
    • 2005
  • This paper presents a 3D video content generation technique and system that uses the multi-view images and the depth map. The proposed uses 3-view video and depth inputs from the 3-view video camera and depth camera for the 3D video content production. Each camera is calibrated using Tsai's calibration method, and its parameters are used to rectify multi-view images for the multi-view stereo matching. The depth and disparity maps for the center-view are obtained from both the depth camera and the multi-view stereo matching technique. These two maps are fused to obtain more reliable depth map. Obtained depth map is not only used to insert a virtual object to the scene based on the depth key, but is also used to synthesize virtual viewpoint images. Some preliminary test results are given to show the functionality of the proposed technique.

  • PDF

Analysis of Landscape Information and Web GIS Implementation of Using 3D Topographic Modeling (3차원 지형모델링에 의한 경관정보 분석과 Web GIS 구현)

  • Kim, Yong-Suk;Hong, Soon-Heon;Ok, Chi-Yul
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.204-211
    • /
    • 2007
  • In this study 3D topographic modeling was made by using aerial photography and digital terrain map, through this we did visibility analysis and implemented Web GIS of Dong-A university. Studying area was Busan Saha-gu Hadan-dong, we used aerial photography on a scale of 1:20,000 and digital terrain map on a scale of 1:5,000. Ortho correction image was made by aerial photography through selecting GCP, image matching, image resampling and precise differential rectification. And DEM on digital map was created using ArcView program, making 3D topographic modeling by road layer and building layer and implementing Web GIS about Dong-A university.

Effects of Depth Map Quantization for Computer-Generated Multiview Images using Depth Image-Based Rendering

  • Kim, Min-Young;Cho, Yong-Joo;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Kyoung-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2175-2190
    • /
    • 2011
  • This paper presents the effects of depth map quantization for multiview intermediate image generation using depth image-based rendering (DIBR). DIBR synthesizes multiple virtual views of a 3D scene from a 2D image and its associated depth map. However, it needs precise depth information in order to generate reliable and accurate intermediate view images for use in multiview 3D display systems. Previous work has extensively studied the pre-processing of the depth map, but little is known about depth map quantization. In this paper, we conduct an experiment to estimate the depth map quantization that affords acceptable image quality to generate DIBR-based multiview intermediate images. The experiment uses computer-generated 3D scenes, in which the multiview images captured directly from the scene are compared to the multiview intermediate images constructed by DIBR with a number of quantized depth maps. The results showed that there was no significant effect on depth map quantization from 16-bit to 7-bit (and more specifically 96-scale) on DIBR. Hence, a depth map above 7-bit is needed to maintain sufficient image quality for a DIBR-based multiview 3D system.

A Study on 3-D Landscape Modeling by Digital Photographic Images (항공사진영상에 의한 3차원경관모델링 실험)

  • Seok Jin-Chang;Lee Jun-Hyuk;Kim Yi-Ho;Lee Young-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.217-222
    • /
    • 2006
  • In this study, we performed three dimensional(3-D) modeling and simulation of terrain surfaces by using large scale aerial photographs. The objectives of this study are to use landscape analysis including 3-D database of built environments. The test area is selected around Olympic stadium located in Susung-gu, Daegu. A 1:5,000 scale of ortho-photo map is generated by photogrammetric procedures from 1:20,000 scale of aerial photographs, Digital Elevation Model (DEM) is also extracted from stereo aerial photographs or digital maps. The heights of buildings are determined using GPS control survey and aerial photographs in the test area, DEMs are extracted from the digital map. And then the two are combined three-dimensional changes of landscape views of buildings with terrain are simulated.

  • PDF

Knowledge Map Service based on Ontology of Nation R&D Information (국가R&D정보에 대한 온톨로지 기반 지식맵 서비스)

  • Kim, Sun-Tae;Lee, Won-Goo
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.251-260
    • /
    • 2016
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patent, and project reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer the further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a RDB-to-Triples transformer is implemented. Lastly, we show an experiment on R&D data integration using the lightweight ontology, triples generation, and visualization and navigation of the knowledge map.

Generation of the Building Layer of Large-scale Digital Map Using Multi-Oblique Images (다방향 경사영상을 이용한 대축척 수치지도 건물레이어 제작)

  • Song, Jai-Youl;Lee, Byoung-Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.621-629
    • /
    • 2011
  • According to the development of technologies for generating the 3D spatial information, the needs for producing and updating the precise 3D objects with LoD 4 level are increased. On the other hand, the needs for real-time updating of 2D digital maps are expanded, based on the execution of various GIS projects. These 2D informations can be extracted from precisely constructed 3D spatial information, to do this the feasibility studies on extraction of the 2D information from the 3D spatial information is needed. In this study, 3D objects are modeled using multi-oblique images, and the objects are stereo-plotted using digital airborne images, as well. Then the two data sets are compared and analyzed. The results show that the accuracy assessments fulfill the 1/1,000 digital map accuracy standard of regulations for photogrametric surveying of National Geographic Information Institute, but the shapes and the areas of building objects are different between two data sets because of the portrayal standards. Consequently, researchers can conclude that it is possible to generate the building layer of large scale topographic map using multi-oblique images, but additional researches is needed to resolve the problems on differences of the portrayal standards.

Multi-path simulation for satellite-based positioning systems using 3D digital map of urban area

  • Hakamata, Tomohiro;Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1015-1017
    • /
    • 2003
  • Recently, DGPS or RTK-GPS techniques enable us to use satellite based positioning systems with high accuracy. But in urban area, navigation systems suffer from problems such as signal blockage by high-rise buildings, multi-path problems, and so on. So we have to know numbers of visible satellites and quality of signals received at the ground level in urban area as accurate as possible. In this paper, we developed a simulation system called LoQAS [Location service Quality Assessment System, 2002, the University of Tokyo] which can simulate numbers of visible satellites and DOP values using accurate satellite orbital data and 3-D digital map. In this time, we evaluated this system and extended it to deal with reflected signals to assess multi-path problems.

  • PDF

Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map (건설현장 적용을 위한 디지털맵 노이즈 제거 알고리즘 성능평가)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • In recent years, the construction industry is getting bigger and more complex, so it is becoming difficult to acquire point cloud data for construction equipments and workers. Point cloud data is measured using a drone and MMS(Mobile Mapping System), and the collected point cloud data is used to create a 3D digital map. In particular, the construction site is located at outdoors and there are many irregular terrains, making it difficult to collect point cloud data. For these reasons, adopting a noise reduction algorithm suitable for the characteristics of the construction industry can affect the improvement of the analysis accuracy of digital maps. This is related to various environments and variables of the construction site. Therefore, this study reviewed and analyzed the existing research and techniques on the noise reduction algorithm. And based on the results of literature review, performance evaluation of major noise reduction algorithms was conducted for digital maps of construction sites. As a result of the performance evaluation in this study, the voxel grid algorithm showed relatively less execution time than the statistical outlier removal algorithm. In addition, analysis results in slope, space, and earth walls of the construction site digital map showed that the voxel grid algorithm was relatively superior to the statistical outlier removal algorithm and that the noise removal performance of voxel grid algorithm was superior and the object preservation ability was also superior. In the future, based on the results reviewed through the performance evaluation of the noise reduction algorithm of this study, we will develop a noise reduction algorithm for 3D point cloud data that reflects the characteristics of the construction site.