• Title/Summary/Keyword: 3-Aminopyridine

Search Result 48, Processing Time 0.019 seconds

A General Strategy for the Synthesis of Amino-Substituted 2-Pyridones Using a Palladium-Catalyzed Amination Reaction

  • Kim, Young-Ha;Kim, Yeong-Joon;Chang, Sung-Youn;Kim, Bum-Tae;Heo, Jung-Nyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.777-782
    • /
    • 2007
  • A novel library of amino-substituted 2-pyridones has been constructed through a two-step sequence of microwave-promoted Buchwald-Hartwig amination of 2-benzyloxy halopyridines followed by debenzylation. Microwave-promoted amination of 3- or 4-halopyridine in the presence of a suitable palladium catalyst and ligand system provided amino-substituted 2-benzyloxypyridines in excellent yields. Then, debenzylation of 2- benzyloxypyridines afforded the corresponding 2-pyridones with high efficiency.

Effects of Zinc on Spontaneous Miniature GABA Release in Rat Hippocampal CA3 Pyramidal Neurons

  • Choi, Byung-Ju;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.59-64
    • /
    • 2006
  • The effects of $Zn^{2+}$ on spontaneous glutamate and GABA release were tested in mechanically dissociated rat CA3 pyramidal neurons which retained functional presynaptic nerve terminals. The spontaneous miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) were pharmacologically isolated and recorded using whole-cell patch clamp technique under voltage-clamp conditions. $Zn^{2+}$ at a lower concentration $(30{\mu}M)$ increased GABAergic mIPSC frequency without affecting mIPSC amplitude, but it decreased both mIPSC frequency and amplitude at higher concentrations $({\ge}300{\mu}M)$. In contrast, $Zn^{2+}$ (3 to $100{\mu}M$) did not affect glutamatergic mEPSCs, although it slightly decreased both mIPSC frequency and amplitude at $300{\mu}M$ concentration. Facilitatory effect of $Zn^{2+}$ on GABAergic mIPSC frequency was occluded either in $Ca^{2+}$-free external solution or in the presence of $100{\mu}M$ 4-aminopyridine, a non-selective $K^{+}$ channel blocker. The results suggest that $Zn^{2+}$ at lower concentrations depolarizes GABAergic nerve terminals by blocking $K^{+}$ channels and increases the probability of spontaneous GABA release. This $Zn^{2+}$-mediated modulation of spontaneous GABAergic transmission is likely to play an important role in the regulation of neuronal excitability within the hippocampal CA3 area.

Nitric Oxide Modulation of GABAergic Synaptic Transmission in Mechanically Isolated Rat Auditory Cortical Neurons

  • Lee, Jong-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.461-467
    • /
    • 2009
  • The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic $K^+$ channels by 4-aminopyridine, a $K^+$ channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic $Ca^{2+}$ channels by $Cd^{2+}$, a general voltage-dependent $Ca^{2+}$ channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic $Ca^{2+}$ channels in the presynaptic nerve terminals of A1 neurons.

Vasorelaxing Mechanism of Crude Saponin of Korea Red Ginseng in the Resistance-sized Mesenteric Artery of Rat

  • Kim, Shin-Hye;Park, Hyung-Seo;Lee, Mee-Young;Oh, Young-Sun;Kim, Se-Hoon
    • Journal of Ginseng Research
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • It has been well known that Korea red ginseng has an antihypertensive effect. The antihypertensive effect may be due to its ability to change the peripheral resistance. Change of vascular tone in the resistance-sized artery contribute to the peripheral resistance, thereby regulate the blood pressure. Therefore, we investigated to clarify the vasorelaxing mechanism induced by crude saponin of Korea red ginseng in the resistance-sized mesenteric artery of rats. The resistance-sized mesenteric artery was isolated and cut into a ring. The ring segment was immersed in HEPES-buffered solution and its isometric tension was measured using myograph force-displacement transducer. Crude saponin of ginseng relaxed the mesenmetric arterial rings precontracted with norepinephrine (3$\mu$M) in dose-dependent manner (0.01 mg/㎖ -1 mg/㎖. The relaxation by crude saponin was smaller in endothelium-intact preparation than that in endothelium-denuded preparation. The contraction induced by A23187 or phorbol 12,13-dibutyrate was not affected by crude saponin of ginseng. The vasorelaxing effect of crude saponin of ginseng was significantly attenuated by the increase of the extracellular K$\^$+/ concentration. Crude saponin-induced vasorelaxation was not affected by tetraethylammonium (1 mM), glybenclamide (10$\mu$M), and 4-aminopyridine (0.1 mM) in these preparations. Ba$\^$2+/(10$\mu$M ∼100$\mu$M) markedly reduced the crude saponin-induced vasorelakation dose-dependently. From the above results, we suggest that crude saponin of ginseng may stimulate K$\^$+/ efflux and hyperpolarize the membrane, thereby cause the vasorelaxation in the resistance-sized mesenteric artery of rats.

Influence of Nicorandil on Aortic Strip's Contractility and Blood Pressure of the Rat

  • Lim, Dong-Yoon;Kim, Yong-Jik;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.48-58
    • /
    • 2005
  • The present study was conducted to investigate the effects of nicorandil on arterial blood pressure and vascular contractile responses in the normotensive anesthetized rats and to establish the mechanism of action. Nicorandil (30~300 ${\mu}g/kg$) given into a femoral vein of the normotensive anesthetized rat produced a dose-dependent depressor response. These nicorandil-induced hypotensive responses were not affected by pretreatment with atropine (3.0 mg/kg, i.v.) or propranolol (2.0 mg/kg, i.v.), while markedly inhibited in the presence of chlorisondamine (1.0 mg/kg, i.v.) or phentolamine (2.0 mg/kg, i.v.). Futhermore, after the pretreatment with 4-aminopyridine (1.0 mg/kg/30 min, i.v.) or glibenclamide (50.0 ${\mu}g/kg$/30min) into a femoral vein made a significant reproduction in pressor responses induced by intravenous norepinephrine. In he isolated rat aortic strips, both phenylephrine (10$^{-5}$ M)- and high potassium (5.6 ${\times}\;10^{-2}$ M)-inducedcontractile responses were dose-dependently depressed in the presence of nicorandil (25~100 ${\mu}M$). Collectively, these experimental results demonstrate that intravenous nicorandil causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of vascular adrenergic ${\alpha}_1$-receptors, in addition to the well-known mechanism of potassium channel opening-induced vasorelaxation.

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

  • Wijerathne, Tharaka Darshana;Kim, Jihyun;Yang, Dongki;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.241-249
    • /
    • 2017
  • Plasma membrane hyperpolarization associated with activation of $Ca^{2+}$-activated $K^+$ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary ${\gamma}^2$-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific $K^+$ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical $BK_{Ca}$ activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting ${\gamma}^2$ subunit, hLRRC52. As previously reported, Slo3 $K^+$ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 $K^+$ current, and internal alkalinization and $Ca^{2+}$ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 $K^+$ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular $Ca^{2+}$. In contrast, elevation of intracellular $Ca^{2+}$ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate $Ca^{2+}$-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

Pyran and Pyridine as Building Blocks in Heterocyclic Synthesis (이중고리 합성에 블록제로서 이용된 피란과 피리딘)

  • El-Hashash, Maher.A.;El-Sawy, Abdallah.A.;Eissa, Abdelmonem.M.F.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.308-324
    • /
    • 2009
  • The present work is devoted to study the interaction of $\beta$-aroylacrylic acid derivative (3) with malononitrile in (DMF) in the presence of piperidine and/or ammonium acetate, then using the formed compounds as starting materials for synthesizing fused and isolated heterocyclic systems. It has been established that the $\beta$-aroylacrylic acid (3) reacts with malononitrile in (DMF) in the presence of piperidine as a catalyst with the formation of 4H-pyran derivative (4). By changing the catalyst into ammonium acetate, pyridine derivative (5) has been obtained. Also the N-maleamic acid derivatives (19) and (27) have been synthesized via the interaction of (4) and (5) with maleic anhydride. The purpose of this step is to study the behavior of the formed maleamic acid derivatives – as analogies of $\beta$-aroylacrylic acids – towards different active methylene compounds under Michael addition reaction.

The Effects of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (1) Dissociation Constants of Some Substituted Pyridines in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향. (1) 수용액중에서 몇가지 치환피리딘류의 해리상수)

  • Jung-Ui Hwang;Jong-Jae Chung;Jong-Eon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.145-151
    • /
    • 1986
  • Using a new conductometric method, dissociation constants of 3-cyano, 4-cyano, 3-amino and 4-aminopyridine were measured in the temperature range 15 ∼ 40${\circ}C$ and pressure up to 2500bar in aqueous media. This method is convenient to apply to the low dissociative acid and base but have to do tedious extrapolating procedure for the ionic conductance in elaborated temperatures and pressures and have to know any reference dissociation constant. The measured dissociation constants were increased as the temperature increase but decreased as the pressure increase. From the constants, various thermodynamic properties were evaluated and discussed for the dissociation reactions.

  • PDF

Calcium Influx is Responsible for Afterdepolarizations in Rat Hippocampal Dentate Granule Cells

  • Park, Won-Sun;Lee, Suk-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.143-147
    • /
    • 2002
  • Granule cells in dentate gyrus of hippocampus relay information from entorhinal cortex via perforant fiber to pyramidal cells in CA3 region. Their electrical activities are known to be closely associated with seizure activity as well as memory acquisition. Since action potential is a stereotypic phenomena which is based on all-or-none principle of $Na^+$ current, the neuronal firing pattern is mostly dependent on afterpotentials which follows the stereotypic $Na^+$ spike. Granule cells in dentate gyrus show afterdepolarization (ADP), while interneurons in dentate gyrus have afterhyperpolarizaton. In the present study, we investigated the ionic mechanism of afterdepolarization in hippocampal dentate granule cell. Action potential of dentate granule cells showed afterdepolarization, which was characterized by a sharp notch followed by a depolarizing hump starting at about $-49.04{\pm}1.69\;mV\;(n=43,\;mean{\pm}SD)$ and lasting $3{\sim}7$ ms. Increase of extracellular $Ca^{2+}$ from 2 mM to 10 mM significantly enhanced the ADP both in amplitude and in duration. A $K^+$ channel blocker, 4-aminopyridine (4-AP, 2 mM), enhanced the ADP and often induced burst firings. These effects of 10 mM $Ca^{2+}$ and 4-AP were additive. On the contrary, the ADP was significantly suppressed by removal of external $Ca^{2+},$ even in the presence of 4-AP (2 mM). A $Na^+$ channel blocker, TTX (100 nM), did not affect the ADP. From these results, it is concluded that the extracellular $Ca^{2+}$ influx contributes to the generation of ADP in granule cells.

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF