1 |
Ablad, B., Borg, K. O., Carlsson, E., Johnson, G., Malmfors, L. and Regardh, C. G. (1975). A survey of the pharmacological properties of metoprolol in animals and man. Acta. Pharmacol. Toxicol.(Copenh) 36(5), 7-23
|
2 |
Akai, K., Wang, Y., Sato, K., Sekiguchi, N., Sugimura, A., Kumagai, T., Komaru, T., Kanatsuka H. and Shirato, K. (1995). Vasodilatory effect of nicorandil on coronary arterial microvessels: Its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J. Cardiovasc. Pharmacol. 26, 541-547
DOI
ScienceOn
|
3 |
Arena, J. P. and Kass, R. S. (1989). Activation of ATP-sensitive channels in heart cells by pinacidil: dependence on ATP. Am. J. Physiol. 257, H2092-H2096
|
4 |
Aschroft, F. M. (1990). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118
DOI
ScienceOn
|
5 |
Bevan, J. A. (1982). Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am. J. Cardiol. 46, 519-524
|
6 |
Bolton, T. M. (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 3, 606-718
|
7 |
Brayden, J. E. (1996). Potassium channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 23, 1069-1076
DOI
ScienceOn
|
8 |
Dube, G. P., Baik, Y. H. and Schwartz, A. (1985). Effects of novel calcium channel agonist dihydropyridine analogue, Bay K 9644, on pig coronary artery: Biphasic mechanical response and paradoxical potentiation of contraction by diltiazem and nimodipine. J. Cardiovasc. Pharmacol. 7, 377-389
DOI
ScienceOn
|
9 |
Dube, G. P., Baik, Y. H., Van Breemen, C. and Schwartz, A. (1988). Effects of isosorbide dinitrate and diltiazem on flux and contraction in artery. European J. Pharmacol. 145, 39-47
DOI
ScienceOn
|
10 |
Edwards, G. and Weston, A. H. (1990). Structure-activity relationships of channel openers. Trends. Pharmacol. Sci. 11, 417-422
DOI
ScienceOn
|
11 |
Edwards, G. and Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33, 597-637
DOI
ScienceOn
|
12 |
Endoh, M., and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319
DOI
ScienceOn
|
13 |
Goldschmidt, M., Landzberg B. R. and Frishman, W. H. (1996). Nicorandil. A potassium channel opening drug for treatment of ischemic heart disease. J. Clin. Pharmacal. 36, 559-572
DOI
ScienceOn
|
14 |
Frampton, J., Buckley M. M. and Fitton, A. (1992). Nicorandil. A review of its pharmacology and therapeutic effects in angina pectoris. Drugs 44, 625-655
DOI
ScienceOn
|
15 |
Freis, E. E., Mackey, J. D. and Oliver, W. F. (1951). The effect of 'sympatholytic' drugs on the cardiovascular responses to epinephrine and norepinephrine in man. Cir. Res. 3, 254
|
16 |
Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito Y. and Kuriyama, H. (1981). Effects of 2-nicotinarnidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
|
17 |
Hamada, E., Takikawa, R., Ito, H., Iguchi, M., Terano, A., Sugimoto, T. and Kurachi, Y. (1990). Glibenclamide specifically blocks ATP-sensitive channel current in atrial myocytes of guinea pig heart. Jpn. J. Pharmacal. 54, 473-477
DOI
|
18 |
Hiraoka, M. and Fan, Z. (1989). Activation of ATP-sensitive outward current by nicorandil (2-nicotinamidoethyl mitrate) in isolated ventricular myocytes. J. Pharmacal. Exp. Ther. 250, 278-285
|
19 |
Chujo, M., Mori, H., Tanaka, E., Nakazawa, H. and Okino, H. (1994). Inhibitory effects of nicorandil on sympathetic coronary vasoconstriction. Cardiovasc. Res. 28(6), 917-22
DOI
ScienceOn
|
20 |
Constantine, J. W., Mcshane, W. K., Scriabine, A. and Hess, H. J. (1973). Analysis of the hypotensive action of prazosin. In Hypertension: Mechanisms and Management (G. Onesti, K. E. Kim, J. H. Moyer, Ed.), pp. 429. Grume & Stratton Inc., New York
|
21 |
Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends. Pharmacol. Sci. 9, 21-28
DOI
ScienceOn
|
22 |
Itoh, T., Furukawa, K., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig arid porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218(1), 260-270
|
23 |
Davie, C. S., Kubo, M. and Standen, N. B. (1998). Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries. Br. J. Pharmacol. 125(8), 1715-1725
DOI
ScienceOn
|
24 |
Ito, Y., Kitamura, K. and Kuriyama, H. (1980a). Actions of nitroglycerin on the membrane and mechanical properties of smooth muscles of the coronary artery of the pig. Br. J. Pharmacol. 70, 197-204
DOI
ScienceOn
|
25 |
Ito, Y., Kitamura, K. and Kuriyama, H. (1980b). Nitroglycerin and catecholamine actions on smooth muscle cells of cannine coronary artery. J. Physiol. (London) 309, 171-183
DOI
|
26 |
Kawai, Y., Hayashi, Y., Ito, I., Kamibayashi, T., Takada, K., Kagawa, K., Yamatodani, A. and Mashimo, T. (2002). Nicorandil prevents epinephrine-induced arrhythmias in halothane-anesthetized rats by nitric oxide-dependent mechanism. Naunyn Schmiedebergs Arch. Pharmacol. 366 (6), 522-527
DOI
ScienceOn
|
27 |
Kim, J. M., Park, K. O. and Baik, Y. H. (1989). Effects of antiepileptic drugs on contractile responses of vascular smooth muscles. Chonnam J. Med. Sci. 2(1), 50-59
|
28 |
Findlay, I. (1987). ATP-sensitive channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pflug. Arch. 410, 313-320
DOI
ScienceOn
|
29 |
Fink, R. H. A. and Stephenson, D. G. (1987). -movements in muscle modulated by the state of -channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 409, 374-380
DOI
ScienceOn
|
30 |
Fleckenstein, A. (1977). Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149-166
DOI
ScienceOn
|
31 |
Nelson, M. T. and Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799-C822
DOI
|
32 |
Forestier, C., Pierrard, J. and Vivaudou, M. (1996). Mechanism of action of K channel openers on skeletal muscle channels. Interactions with nucleotides and protons. J. Gen. Physiol. 107, 489-502
DOI
ScienceOn
|
33 |
Longman, S.D. and Hamilton, T.C., (1992). Potassium channel activator drugs: mechanism of action, pharmacological properties, and therapeutic potential. Med. Res. Rev. 12, 73-148
DOI
ScienceOn
|
34 |
Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903
DOI
ScienceOn
|
35 |
Ogino, K., Kinugawa, T., Noguchi, N., Kitamura, H., Matsumoto, T., Miyakoda, H., Kotake, H. and Mashiba, H. (1992). Suppression of sympathetic nervous system activity by nicorandil during exercise. Gen. Pharmacol. 23(3), 325-329
DOI
ScienceOn
|
36 |
Ohya, Y., Setoguchi, M., Fujii, K., Nagao, T, Abe, I. and Fujishima, M. (1996). Impaired action of levcromakalim on ATP-sensitive channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension 27, 1234-1239
DOI
ScienceOn
|
37 |
Sanguinetti, M. C., Scott, A. L., Zingaro, G. L. and Siegl, P. K. (1988). BRL 34915 (cromakalim) activates ATP-sensitive current in cardiac muscle. Proc. Natl. Acad. Sci. USA 85, 8360-8364
|
38 |
Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacal. 5, 364-370
DOI
ScienceOn
|
39 |
Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7
DOI
ScienceOn
|
40 |
Horie, M., Irisawa, H. and Noma, A. (1987). Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channels in guinea-pig ventricular cells. J. Physiol. 387, 251-272
DOI
|
41 |
Imai, S. and Kitagawa. (1981). A comparison of the differential effects of nitroglycerin, nifedipine, and papaverine on contractures induced in vascular and intestinal smooth muscle by potassium and lanthanum. Jap. J. Pharmacol. 31, 193
DOI
|
42 |
Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, pp. 132
|
43 |
Thuringer, D., Cavero, I. and Coraboeuf, E. (1995). Time-dependent fading of the activation of channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes. Br. J. Pharmacol. 115, 117-127
DOI
ScienceOn
|
44 |
Tuttle, J. B., Spitsbergen, J. M., Stewart, J. S., McCarty, R. M. and Steers, W. D. (1995). Altered signalling in vascular smooth muscle from spontaneously hypertensive rats may link medial hypertrophy, vessel hyperinnervation and elevated nerve growth factor. Clin. Exp. Pharmacol. Physiol. 1, S117-S119
|
45 |
Watkins, R. W. and Davidson, I. W. F. (1980). Comparative effects of nitroprusside and nitrogiycerin: Actions on phasic and tonic components of arterial smooth muscle contraction. European J. Pharmacol. 62, 191-200
DOI
ScienceOn
|
46 |
Zhou, Q., Satake, N. and Shibata, S. (1995). The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery. Eur. J. Pharmacol. 273, 153-159
DOI
ScienceOn
|
47 |
Kimura, M., Nojima, H., Muroi, M. and Kimura, I. (1991). Mechanism of the blocking action of -nicorandil on the nicotinic acetylcholine receptor channel in mouse skeletal muscles. Neuropharmacology 30, 835-841
DOI
ScienceOn
|
48 |
Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633
DOI
ScienceOn
|
49 |
Liu, Y., Ren, G., O'Rourke, B., Marban, E. and Seharaseyon, J. (2001). Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol. Pharmacol. 59(2), 225-230
DOI
|
50 |
Kwak, Y. G., Park, S. K., Kang, H. S., Kim, J. S., Chae, S. W., Cho, K. P., Yoo, S. E. and Kim, D. (1995). KR-30450, a newly synthesized benzopyran derivative, activates the cardiac ATP-sensitive channel. J. Pharmacol. Exp. Ther. 275, 807-812
|
51 |
Schwartz, A. and Taira, N. (1983). Calcium channel-blocking drugs: A novel intervention for the treatment of cardiac disease. eire. Res. (American Heart association Monograph) 52, 1-183
|
52 |
Schwartz, A. and Triggle, D. J. (1984). Cellular action of calcium blocking drugs. Ann. Rev. Med. 35, 325-339
DOI
ScienceOn
|
53 |
Shibata, S., Satake, N., Takagi, T, Kerfoot, F. and Suh, T. K. (1984). Relaxing effect of nicorandil (N-2-(hydroxyethyl)nicotinamide nitrate), a new anti-angina agent, on the isolated vascular smooth muscle. Eur. J. Pharmacol. 99(23), 219-26
DOI
ScienceOn
|
54 |
Smith, J. M. and Wahler, G M. (1996). ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats. Mol. Cell. Biochem. 158, 43-51
|
55 |
Shen, W. K., Tung, R. T., Machulda, M. M. and Kurachi, Y. (1991). Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive channels. A comparison with pinacidil and lemakalim. Cire. Res. 69, 1152-1158
DOI
ScienceOn
|