Browse > Article

Influence of Nicorandil on Aortic Strip's Contractility and Blood Pressure of the Rat  

Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
Kim, Yong-Jik (Department of Pharmacology, College of Medicine, Chosun University)
Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), Chosun University)
Publication Information
Biomolecules & Therapeutics / v.13, no.1, 2005 , pp. 48-58 More about this Journal
Abstract
The present study was conducted to investigate the effects of nicorandil on arterial blood pressure and vascular contractile responses in the normotensive anesthetized rats and to establish the mechanism of action. Nicorandil (30~300 ${\mu}g/kg$) given into a femoral vein of the normotensive anesthetized rat produced a dose-dependent depressor response. These nicorandil-induced hypotensive responses were not affected by pretreatment with atropine (3.0 mg/kg, i.v.) or propranolol (2.0 mg/kg, i.v.), while markedly inhibited in the presence of chlorisondamine (1.0 mg/kg, i.v.) or phentolamine (2.0 mg/kg, i.v.). Futhermore, after the pretreatment with 4-aminopyridine (1.0 mg/kg/30 min, i.v.) or glibenclamide (50.0 ${\mu}g/kg$/30min) into a femoral vein made a significant reproduction in pressor responses induced by intravenous norepinephrine. In he isolated rat aortic strips, both phenylephrine (10$^{-5}$ M)- and high potassium (5.6 ${\times}\;10^{-2}$ M)-inducedcontractile responses were dose-dependently depressed in the presence of nicorandil (25~100 ${\mu}M$). Collectively, these experimental results demonstrate that intravenous nicorandil causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of vascular adrenergic ${\alpha}_1$-receptors, in addition to the well-known mechanism of potassium channel opening-induced vasorelaxation.
Keywords
Nicorandil; Vasorelaxation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ablad, B., Borg, K. O., Carlsson, E., Johnson, G., Malmfors, L. and Regardh, C. G. (1975). A survey of the pharmacological properties of metoprolol in animals and man. Acta. Pharmacol. Toxicol.(Copenh) 36(5), 7-23
2 Akai, K., Wang, Y., Sato, K., Sekiguchi, N., Sugimura, A., Kumagai, T., Komaru, T., Kanatsuka H. and Shirato, K. (1995). Vasodilatory effect of nicorandil on coronary arterial microvessels: Its dependency on vessel size and the involvement of the ATP-sensitive potassium channels. J. Cardiovasc. Pharmacol. 26, 541-547   DOI   ScienceOn
3 Arena, J. P. and Kass, R. S. (1989). Activation of ATP-sensitive $K^+$ channels in heart cells by pinacidil: dependence on ATP. Am. J. Physiol. 257, H2092-H2096
4 Aschroft, F. M. (1990). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 97-118   DOI   ScienceOn
5 Bevan, J. A. (1982). Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am. J. Cardiol. 46, 519-524
6 Bolton, T. M. (1979). Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 3, 606-718
7 Brayden, J. E. (1996). Potassium channels in vascular smooth muscle. Clin. Exp. Pharmacol. Physiol. 23, 1069-1076   DOI   ScienceOn
8 Dube, G. P., Baik, Y. H. and Schwartz, A. (1985). Effects of novel calcium channel agonist dihydropyridine analogue, Bay K 9644, on pig coronary artery: Biphasic mechanical response and paradoxical potentiation of contraction by diltiazem and nimodipine. J. Cardiovasc. Pharmacol. 7, 377-389   DOI   ScienceOn
9 Dube, G. P., Baik, Y. H., Van Breemen, C. and Schwartz, A. (1988). Effects of isosorbide dinitrate and diltiazem on $Ca^{2+}$ flux and contraction in artery. European J. Pharmacol. 145, 39-47   DOI   ScienceOn
10 Edwards, G. and Weston, A. H. (1990). Structure-activity relationships of $K^+$ channel openers. Trends. Pharmacol. Sci. 11, 417-422   DOI   ScienceOn
11 Edwards, G. and Weston, A. H. (1993). The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33, 597-637   DOI   ScienceOn
12 Endoh, M., and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319   DOI   ScienceOn
13 Goldschmidt, M., Landzberg B. R. and Frishman, W. H. (1996). Nicorandil. A potassium channel opening drug for treatment of ischemic heart disease. J. Clin. Pharmacal. 36, 559-572   DOI   ScienceOn
14 Frampton, J., Buckley M. M. and Fitton, A. (1992). Nicorandil. A review of its pharmacology and therapeutic effects in angina pectoris. Drugs 44, 625-655   DOI   ScienceOn
15 Freis, E. E., Mackey, J. D. and Oliver, W. F. (1951). The effect of 'sympatholytic' drugs on the cardiovascular responses to epinephrine and norepinephrine in man. Cir. Res. 3, 254
16 Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito Y. and Kuriyama, H. (1981). Effects of 2-nicotinarnidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
17 Hamada, E., Takikawa, R., Ito, H., Iguchi, M., Terano, A., Sugimoto, T. and Kurachi, Y. (1990). Glibenclamide specifically blocks ATP-sensitive $K^+$ channel current in atrial myocytes of guinea pig heart. Jpn. J. Pharmacal. 54, 473-477   DOI
18 Hiraoka, M. and Fan, Z. (1989). Activation of ATP-sensitive outward $K^+$ current by nicorandil (2-nicotinamidoethyl mitrate) in isolated ventricular myocytes. J. Pharmacal. Exp. Ther. 250, 278-285
19 Chujo, M., Mori, H., Tanaka, E., Nakazawa, H. and Okino, H. (1994). Inhibitory effects of nicorandil on sympathetic coronary vasoconstriction. Cardiovasc. Res. 28(6), 917-22   DOI   ScienceOn
20 Constantine, J. W., Mcshane, W. K., Scriabine, A. and Hess, H. J. (1973). Analysis of the hypotensive action of prazosin. In Hypertension: Mechanisms and Management (G. Onesti, K. E. Kim, J. H. Moyer, Ed.), pp. 429. Grume & Stratton Inc., New York
21 Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends. Pharmacol. Sci. 9, 21-28   DOI   ScienceOn
22 Itoh, T., Furukawa, K., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig arid porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218(1), 260-270
23 Davie, C. S., Kubo, M. and Standen, N. B. (1998). Potassium channel activation and relaxation by nicorandil in rat small mesenteric arteries. Br. J. Pharmacol. 125(8), 1715-1725   DOI   ScienceOn
24 Ito, Y., Kitamura, K. and Kuriyama, H. (1980a). Actions of nitroglycerin on the membrane and mechanical properties of smooth muscles of the coronary artery of the pig. Br. J. Pharmacol. 70, 197-204   DOI   ScienceOn
25 Ito, Y., Kitamura, K. and Kuriyama, H. (1980b). Nitroglycerin and catecholamine actions on smooth muscle cells of cannine coronary artery. J. Physiol. (London) 309, 171-183   DOI
26 Kawai, Y., Hayashi, Y., Ito, I., Kamibayashi, T., Takada, K., Kagawa, K., Yamatodani, A. and Mashimo, T. (2002). Nicorandil prevents epinephrine-induced arrhythmias in halothane-anesthetized rats by nitric oxide-dependent mechanism. Naunyn Schmiedebergs Arch. Pharmacol. 366 (6), 522-527   DOI   ScienceOn
27 Kim, J. M., Park, K. O. and Baik, Y. H. (1989). Effects of antiepileptic drugs on contractile responses of vascular smooth muscles. Chonnam J. Med. Sci. 2(1), 50-59
28 Findlay, I. (1987). ATP-sensitive $K^+$ channels in rat ventricular myocytes are blocked and inactivated by internal divalent cations. Pflug. Arch. 410, 313-320   DOI   ScienceOn
29 Fink, R. H. A. and Stephenson, D. G. (1987). $Ca^{2+}$-movements in muscle modulated by the state of $K^+$ -channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 409, 374-380   DOI   ScienceOn
30 Fleckenstein, A. (1977). Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149-166   DOI   ScienceOn
31 Nelson, M. T. and Quayle, J. M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, C799-C822   DOI
32 Forestier, C., Pierrard, J. and Vivaudou, M. (1996). Mechanism of action of K channel openers on skeletal muscle $K_{ATP}$ channels. Interactions with nucleotides and protons. J. Gen. Physiol. 107, 489-502   DOI   ScienceOn
33 Longman, S.D. and Hamilton, T.C., (1992). Potassium channel activator drugs: mechanism of action, pharmacological properties, and therapeutic potential. Med. Res. Rev. 12, 73-148   DOI   ScienceOn
34 Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for $K^+$ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903   DOI   ScienceOn
35 Ogino, K., Kinugawa, T., Noguchi, N., Kitamura, H., Matsumoto, T., Miyakoda, H., Kotake, H. and Mashiba, H. (1992). Suppression of sympathetic nervous system activity by nicorandil during exercise. Gen. Pharmacol. 23(3), 325-329   DOI   ScienceOn
36 Ohya, Y., Setoguchi, M., Fujii, K., Nagao, T, Abe, I. and Fujishima, M. (1996). Impaired action of levcromakalim on ATP-sensitive $K^+$ channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension 27, 1234-1239   DOI   ScienceOn
37 Sanguinetti, M. C., Scott, A. L., Zingaro, G. L. and Siegl, P. K. (1988). BRL 34915 (cromakalim) activates ATP-sensitive $K^+$ current in cardiac muscle. Proc. Natl. Acad. Sci. USA 85, 8360-8364
38 Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacal. 5, 364-370   DOI   ScienceOn
39 Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7   DOI   ScienceOn
40 Horie, M., Irisawa, H. and Noma, A. (1987). Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channels in guinea-pig ventricular cells. J. Physiol. 387, 251-272   DOI
41 Imai, S. and Kitagawa. (1981). A comparison of the differential effects of nitroglycerin, nifedipine, and papaverine on contractures induced in vascular and intestinal smooth muscle by potassium and lanthanum. Jap. J. Pharmacol. 31, 193   DOI
42 Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, pp. 132
43 Thuringer, D., Cavero, I. and Coraboeuf, E. (1995). Time-dependent fading of the activation of $K_{ATP}$ channels, induced by aprikalim and nucleotides, in excised membrane patches from cardiac myocytes. Br. J. Pharmacol. 115, 117-127   DOI   ScienceOn
44 Tuttle, J. B., Spitsbergen, J. M., Stewart, J. S., McCarty, R. M. and Steers, W. D. (1995). Altered signalling in vascular smooth muscle from spontaneously hypertensive rats may link medial hypertrophy, vessel hyperinnervation and elevated nerve growth factor. Clin. Exp. Pharmacol. Physiol. 1, S117-S119
45 Watkins, R. W. and Davidson, I. W. F. (1980). Comparative effects of nitroprusside and nitrogiycerin: Actions on phasic and tonic components of arterial smooth muscle contraction. European J. Pharmacol. 62, 191-200   DOI   ScienceOn
46 Zhou, Q., Satake, N. and Shibata, S. (1995). The inhibitory mechanisms of nicorandil in isolated rat urinary bladder and femoral artery. Eur. J. Pharmacol. 273, 153-159   DOI   ScienceOn
47 Kimura, M., Nojima, H., Muroi, M. and Kimura, I. (1991). Mechanism of the blocking action of ${\beta}$-nicorandil on the nicotinic acetylcholine receptor channel in mouse skeletal muscles. Neuropharmacology 30, 835-841   DOI   ScienceOn
48 Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633   DOI   ScienceOn
49 Liu, Y., Ren, G., O'Rourke, B., Marban, E. and Seharaseyon, J. (2001). Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol. Pharmacol. 59(2), 225-230   DOI
50 Kwak, Y. G., Park, S. K., Kang, H. S., Kim, J. S., Chae, S. W., Cho, K. P., Yoo, S. E. and Kim, D. (1995). KR-30450, a newly synthesized benzopyran derivative, activates the cardiac ATP-sensitive $K^+$ channel. J. Pharmacol. Exp. Ther. 275, 807-812
51 Schwartz, A. and Taira, N. (1983). Calcium channel-blocking drugs: A novel intervention for the treatment of cardiac disease. eire. Res. (American Heart association Monograph) 52, 1-183
52 Schwartz, A. and Triggle, D. J. (1984). Cellular action of calcium blocking drugs. Ann. Rev. Med. 35, 325-339   DOI   ScienceOn
53 Shibata, S., Satake, N., Takagi, T, Kerfoot, F. and Suh, T. K. (1984). Relaxing effect of nicorandil (N-2-(hydroxyethyl)nicotinamide nitrate), a new anti-angina agent, on the isolated vascular smooth muscle. Eur. J. Pharmacol. 99(23), 219-26   DOI   ScienceOn
54 Smith, J. M. and Wahler, G M. (1996). ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats. Mol. Cell. Biochem. 158, 43-51
55 Shen, W. K., Tung, R. T., Machulda, M. M. and Kurachi, Y. (1991). Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive $K^+$ channels. A comparison with pinacidil and lemakalim. Cire. Res. 69, 1152-1158   DOI   ScienceOn