• Title/Summary/Keyword: 3 dimensional numerical model

Search Result 1,359, Processing Time 0.028 seconds

A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan (허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구)

  • No, Su-Hyeok;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

3-Dimensional Finite Element Analysis of Hemming for Automotive Outer Panels by Part Model Assembling Method (부분모델 합성법을 이용한 자동차 외판의 헤밍 공정에 대한 3차원 유한요소해석)

  • 김헌영;임희택;김형종;이우홍;박춘달
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2004
  • Hemming is the last farming process in stamping and determines external quality of automotive outer panels. Few numerical approaches using 3-dimensional finite element model have been applied to a hemming process due to small element size which is needed to express the bending behavior of the sheet around small die comer and comparatively big model size of automotive opening parts, such as side door, back door and trunk lid etc In this study, part model assembling method is suggested and applied to the 3-dimensional finite element simulation of flanging and hemming process far an automotive front hood.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation (이안 구조물 건설에 따른 해안선의 변화와 수치계산)

  • 신승호
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

Numerical Study on Inertial Oscillations in the Spin-up of Fluid in a Circular Cylinder (원통 내 스핀업 유동에서의 관성진동에 관한 수치해석적 연구)

  • 서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.9-19
    • /
    • 2001
  • In this paper we present the aspect of inertial oscillation typically observed in the spin-up of fluids at low Rossby numbers in a circular cylinder. Numerical computations for the quasi three-dimensional equation as well as one-dimensional equation are performed to estimate the predictability of the one-dimensional equation with Ekman pumping/suction models. It is assumed that the discrepancy between the two results may be attributed to the inertial oscillation The detailed analysis to the numerical results reveals that the axial plane is dominated by a comparatively strong oscillatory flows caused by the inertial oscillation. In view of the fact that the time-averaged flow field however agrees to the Taylor-Proudman theorem, it is recommended that further analysis is needed to obtain an improved one-dimensional model like the Reynolds-averaged Navier-Stokes equation for turbulent flows.

  • PDF

Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (II) - Comparison of Numerical Analysis with Physical Modeling - (일체형 식생호안블록 시스템 개발 및 수리특성 연구(II) -일체형 호안블록시스템 수치모의를 통한 효과 분석-)

  • Jang, SukHwan
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.99-109
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of continuous block system in river bank protection which is newly developed in-situ block system. To verify the hydraulic physical modeling and review the effectiveness, the numerical modeling was needed against the model test results for vegetation application or not. HEC-RAS model was for 1 dimensional numerical analysis and SMS was for 2 dimensional numerical analysis. The results of the two dimensional numerical simulation, under the condition of roughness coefficient calibration, show similar and rational consequence against the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

Analysis of Hagen-Poiseuille Flow Using SPH

  • Min, Oakkey;Moon, Wonjoo;You, Sukbeom
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approximation and boundary conditions are explained. Numerical tests are calculated to examine effects caused by the number of particles, the number of particles per smoothing length, artificial viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for reducing the numerical instability directly affects the velocity of the flow, though effects of the other parameters do not produce as much effect as artificial viscosity. Numerical solutions using SPH show close agreement with the exact ones for the model flow, but SPH parameter must be chosen carefully Numerical solutions indicate that SPH is also an effective method for the analysis of 2-dimensional Hagen-Poiseuille flow.

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Three-Dimensional Numerical Modelling of Water Circulation and Thermal Diffusion (해수순환과 온배수 확산에 관한 3차원 수치모델링)

  • Jung Tae Sung;Kim Sang Ik;Kang See Whan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1998
  • Numerical models have been widely used to understand the structure of coastal currents and the transport mechanisms in regard to the fate of pollutants. This study focuses on the development of a three-dimensional model of coastal circulation and mass transport. The model was used to calculate coastal currents and temperature distributions of the thermal plume discharged from a power plant. The model results were compared with field-observed data. They showed the relatively good agreements with the data. The model can be used to estimate the currents and its mass transport in coastal waters.

  • PDF