• Title/Summary/Keyword: 3 cavity-molds

Search Result 19, Processing Time 0.025 seconds

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성형 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.752-755
    • /
    • 2003
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually Injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. To uniformly fill to each cavity, multi-cavity molds are designed to geometrically balanced runner system. However. in practice this is not the case. The previous studies by Beaumount at.[2] reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes or filling imbalance for 3 plate type mold with 8 cavities. We presented a new so called 4BF mold(4plate Type Balanced Filling Mold) to improve filling balance. We conducted a experimental injection molding to verify a efficiency of the 4BF mold. In the results of the experiment, We could confirmed the possibility of the 4BF mold.

  • PDF

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.117-121
    • /
    • 2004
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. But, when injection molding is performed using a mold with balanced runner system filling imbalances are occurred between the cavity to cavity. The previous studies by Beaumont at. all reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes of filling imbalance for 3 plate type mold with 8 cavities. And we exhibited a new so called 4BF mold (4 plate type Balanced Filling Mold) to be possible filling balance. We conducted a experimental injection molding to verify the efficiency of the 4BF mold. In the results of the experiment, we could confirmed the balanced filling possibility of the 4BF mold.

A study on the thermal deformation of 3 cavity GMP mold for glass lens (GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구)

  • Chang, Sung-Ho;Heo, Young-Moo;Shin, Gwang-Ho;Jung, Tae-Sung
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF

A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm (런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구)

  • 박균명;김청균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

A Study on the Aspheric Glass tens Forming Analysis in the Progressive GMP Process

  • Chang, Sung-Ho;Lee, Young-Min;Shin, Kwang-Ho;Heo, Young-Moo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.85-92
    • /
    • 2007
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric glass lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical glass molding pressing (GMP) process was developed with an eye to mass production of precision optical glass parts by molding press. In this paper, as a fundamental research to develop the multi-cavity mold for higher productivity of a progressive GMP process used in the fabrication of an aspheric glass lens, an aspheric glass lens forming simulation was carried out.

A numerical study on micro leakage behaviors at cavity edge during photo reaction injection molding (광반응사출성형 시 캐비티 엣지에서 발생하는 미세누출현상에 관한 해석적 연구)

  • La, Moon-woo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.8-13
    • /
    • 2016
  • Despite technological advance, there have been several troubles in photo reaction injection molding (photo RIM) to produce ultra thin light guide panels (LGPs). In this study, micro leakage problem at cavity edge during photo RIM was investigated numerically. In order to obtain optimal processing conditions, we regulated inlet pressure of injected resin at the cavity edge and figured out micro leakage behaviors. At low inlet pressure (less than 100 Pa), though the micro leakage problem was not occurred, another problem, short shot due to not enough driving force, was appeared More than 1,000 Pa of the inlet pressure, injected resin was rapidly leaked through the micro gap at the cavity edge. Finally, we obtained optimal inlet pressure around 600 ~ 1,000 Pa. At this region, injected resin fully filled the cavity without micro leakage behavior. Based on the present study, further comparative investigations with experimental photo RIM should be performed to find optimal processing conditions for produce ultra thin LGPs.

Optimization of Processing on Filling Balance of the HR3P Mold Structure (균형충전을 위한 HR3P 금형 구조에서의 공정의 최적화)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.98-102
    • /
    • 2009
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance has been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was decreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

On the new mold structure with multi-point gate for filling-balance mold (다점 핀포인트 금형에서 균형충전이 가능한 사출금형 구조)

  • Kwon, Youn-Suk;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.25-29
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and ploymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system. The filling imbalance was desreased up to result range of $3{\leq}DFI{\leq}8(%)$ by using a new runner system for balanced filling.

  • PDF

On the new mold structure with multi-point gate for filling-balance mold (사출성형시 불균형 충전에 관한 다구찌 실험계획법을 이용한 성형공정의 최적화)

  • Hong, Youn-Suk;Han, Dong-Hyup;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.13-16
    • /
    • 2007
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalance have been observed. Filling imbalance could be decreased by modifying processing conditions such as injections rate, mold temperature, injection pressure, melt temperature that are related to shear, viscosity. In this study, a series of experiment was conducted to investigate filling imbalance variation when modifying runner layout and polymer and to determine which processing condition influences as the primary cause of filling imbalance in geometrically balanced runner system.

  • PDF