• Title/Summary/Keyword: 3 axis

Search Result 4,790, Processing Time 0.032 seconds

ON CHARACTERIZATIONS OF SPHERICAL CURVES USING FRENET LIKE CURVE FRAME

  • Eren, Kemal;Ayvaci, Kebire Hilal;Senyurt, Suleyman
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.391-401
    • /
    • 2022
  • In this study, we investigate the explicit characterization of spherical curves using the Flc (Frenet like curve) frame in Euclidean 3-space. Firstly, the axis of curvature and the osculating sphere of a polynomial space curve are calculated using Flc frame invariants. It is then shown that the axis of curvature is on a straight line. The position vector of a spherical curve is expressed with curvatures connected to the Flc frame. Finally, a differential equation is obtained from the third order, which characterizes a spherical curve.

Effect of Load Variation on Transition of Neutral Axis of Laminated Veneer Lumber (LVL) (하중(荷重) 변화(變化)가 적층목질재(積層木質材)(Glulam)의 중립축(中立軸)의 위치변이(位置變移)에 미치는 영향(影響))

  • Park, Heon;An, Tae-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 1991
  • In this study, thickness 40mm glulams were composed of thickness 5mm, 10mm Quercus laminas and Pinus koraiensis laminas to study on the effect of load variation on transition of neutral axis of laminated veneer lumber(LVL). The transition of neutral axis was examined by strain variation, which was checked by strain gauge. amplifier, recorder, and strain meter. The elasticity of glulam was estimated by E = $\Sigma(E_i\;I_ i)$/I and this estimated elasticity values were compared with the elasticity values of glulam in bending. The result obtained can be summarized as follows: 1. The location of neutral axis of glulam was effected by glulam composition methods 2. The neutral axis did not shift by load variation within proportional limit. 3. The estimated elasticity of glulam by E = $\Sigma(E_i\;I_ i)$/I showed much lower value than the elasticity of glulam in bending.

  • PDF

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV (고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석)

  • Shin, Dae-Sig;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

A Study on Operating Software Development and Calibration of Multi-Axis Simulation (다축 시뮬레이터의 구동 소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;류신호;신형성;김상석;김종태;박용래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.141-141
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in th ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axis durability testing simulator is used to car교 out the fatigue test. In this paper, the operation software for simultaneously driving 3-axis simulator is developed and the real-time signals of input-output data are displayed in window of PC. Moreover, the displacements and the loads of 3-axis actuators are calibrated separately and the operating characteristics of the actuators are evaluated.

  • PDF

Improvement of Mold-Sculptured Surface Quality Based on Tool Shape and Posture (공구 형상 및 자세에 따른 금형 자유곡면 가공품질 향상에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.100-106
    • /
    • 2021
  • This paper presents a study on the improvement of the machining quality of sculptured-surfaces of molds according to the shape and posture of the tool. In the existing 3-axis machining, the methods using the ball end-mill and radius end-mill were analyzed for various cutting patterns and compared with those of the 5-axis machining. It was observed that the 5-axis machining using a ball end-mill obtained the finest surface roughness, and for the 3-axis machining, the optimal results were obtained for the one-way machining using a radius end-mill.

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.

An Optical Cavity Design for an Infrared Gas Detector Using an Off-axis Parabolic Mirror

  • Jeong, You-Jin;Kang, Dong-Hwa;Seo, Jae-Yeong;Jo, Ye-Ji;Seo, Jin-Hee;Choi, Hwan-Young;Jung, Mee-Suk
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.374-381
    • /
    • 2019
  • This study examined a method for designing the optical cavity of a non-dispersive infrared gas detector. The infrared gas detector requires an optical cavity design to lengthen the ray path. However, the optical cavity with multiple reflecting surfaces has off-axis aberration due to the characteristics of the reflecting optical system. The rays were parallelized by using the off-axis parabolic mirror to easily increase the ray path and eliminate off-axis aberration so that the rays are admitted to the effective area of the infrared detector uniformly. A prototype of an infrared gas detector was produced with the designed optical cavity to confirm the performance.

Crystal Structure Changes of LiNi0.5Co0.2Mn0.3O2 Cathode Materials During the First Charge Investigated by in situ XRD

  • Lee, Sang-Woo;Jang, Dong-Hyuk;Yoon, Jeong-Bae;Cho, Yong-Hun;Lee, Yun-Sung;Kim, Do-Hoon;Kim, Woo-Seong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • The structural changes of $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material for lithium ion battery during the first charge was investigated in comparison with $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ using a synchrotron based in situ X-ray diffraction technique. The structural changes of these two cathode materials show similar trend during first charge: an expansion along the c-axis of the unit cell with contractions along the a- and b-axis during the early stage of charge and a major contraction along the c-axis with slight expansions along the a- and b-axis near the end of charge at high voltage limit. In $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode, however, the initial unit cell volume of H2 phase is bigger than that of H1 phase since the c-axis undergo large expansion while a- and b- axis shrink slightly. The change in the unit cell volume for $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ during charge is smaller than that of $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$. This smaller change in unit cell volume may give the $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material a better structural reversibility for a long cycling life.

Design of a 6-Axis Inertial Sensor IC for Accurate Location and Position Recognition of M2M/IoT Devices (M2M / IoT 디바이스의 정밀 위치와 자세 인식을 위한 6축 관성 센서 IC 설계)

  • Kim, Chang Hyun;Chung, Jong-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.82-89
    • /
    • 2014
  • Recently, inertial sensors are popularly used for the location and position recognition of small devices for M2M/IoT. In this paper, we designed low power, low noise, small sized 6-axis inertial sensor IC for mobile applications, which uses a 3-axis piezo-electric gyroscope sensor and a 3-axis piezo-resistive accelerometer sensor. Proposed IC is composed of 3-axis gyroscope readout circuit, two gyroscope sensor driving circuits, 3-axis accelerometer readout circuit, 16bit sigma-delta ADC, digital filter and control circuit and memory. TSMC $0.18{\mu}m$ mixed signal CMOS process was used. Proposed IC reduces 27% of the current consumption of LSM330.