• Title/Summary/Keyword: 3 Point Bending Test

Search Result 369, Processing Time 0.025 seconds

A Study of Mode II Interlaminar Fracture for CFRP Laminate Composite using the 4-point Bending CNF Specimen (4점굽힘 CNF 시험편을 이용한 CFRP적층 복합재 모드 II 층간파괴)

  • Kwon, Oh-Heon;Kang, Ji-Woong;Tae, Hwan-Jun;Hwang, Yeong-Yeun;Yun, Yu-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.34-39
    • /
    • 2010
  • Unidirectional Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness and strength. For those reasons, the use of the unidirectional CFRP has increased in jet fighters, aerospace structures. However, unidirectional CFRP composites have a lot of problems, especially delamination, compared with traditional materials such as steels and aluminums, and so forth. Therefore, the interlaminar fracture toughness for a laminate CFRP composite is very important. In this study, The mode II interlaminar fracture toughness was measured by using center notched flexure(CNF) test specimen. The CNF specimens using unidirectional carbon prepreg were fabricated by a hot-press with the gage pressure and temperature controller. And three kinds of a/L ratio was applied to these specimens. Here, we discuss the relations of the crack growth and the mode II interlaminar fracture under the four point bending CNF test. From the results, we shows that mode II interlaminar was occurred when the more $a_0$/L ratio, the less load. And $G_{IIC}$ also were obtained as 5.33, 2.9 and $0.58kJ/m^2$ according to $a_0$/L ratio=0.2, 0.3 and 0.4.

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test (3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정)

  • Lee, Dong-Ki;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint ($Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

A Study on Acoustic Emission Characteristics through the Cyclic Thermal Test of Thermal Barrier Coating by Plasma Spray Process (플라즈마 용사법에 의한 열차폐 코팅의 열피로에 따른 AE신호 특성 연구)

  • Park J.H.;Lee K.H.;Ye K.H.;Kim S.T.;Jeon C.H.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1349-1352
    • /
    • 2005
  • This paper is to investigate a defect for thermal barrier coating layers by acoustic emission method in 4-point bending test. The two-layer thermal barrier coating is composed of $150\mu{m}\;CoNiCrAlY\;bond\;coating\;by\;vacuum\;plasma\;spray(VPS)\;process\;and\;250\mu{m}\;ZrO_2-8wt%Y_2O_3$ ceramic coating layer by air plasma spray(APS) process on Inconel-718. The specimen prepared by cyclic thermal test(500, 1000, 2000cycle) at $1050^{\circ}C$ The AE monitoring system is composed of PICO type sensor, a wide band pre-amplifier(40dB), PC and AE DSP(16/32 PAC) board. The AE event, amplitude, Cumulative energy and count of coating specimens is evaluated according to cyclic thermal test.

  • PDF

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with ENF Specimen (ENF 시험편을 이용한 평직 CFRP의 층간파괴인성 및 AE 특성 평가)

  • Yun, Y.S.;Kwon, O.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • Woven fabrics composites are used as primary structural components in many applications because of their superior properties that offer high specific strength and stiffness. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. Also, laminate woven fabrics CFRP have unique failure mechanisms such as fiber bridging, fiber/matrix crack and so on. In particular, the delamination phenomenon of the composite materials is one of the most frequent failure mechanisms. So, we estimated interlaminar fracture and damage in composites using as ENF specimen by a 3 point bending test. And AE characteristics were examined for crack propagation on plain woven CFRP. We obtained the following conclusions from the results of the evaluation of the 3 point bending fracture test and AE characteristic estimation. AE counts of maximum crack length were obtained as $85.97{\times}10^4\;and\;93{\times}10^3\;for\;a_0/L=0.3$ and 0.6, respectively. Also the maximum amplitudes were over 80dB at both $a_0/L=0.3\;and\;0.6$. $G_{IIc}$ at that's $a_0/L$ ratio were obtained with $1.07kJ/m^2\;and\;3.79kJ/m^2$.

  • PDF

Three Point Bending Fatigue Property with Heat Treatment Condition in a Powder Metallurgical High Speed Steel JYPS-23 (분말고속도공구강 JYPS-23에서 열처리조건에 따른 3점 굽힘피로특성)

  • 홍성현;배종수;김용진
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2000
  • The effect of tempering temperature on the three point bending fatigue behavior of a P/M high speed steel JYPS-23 (1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) was investigated. The number of cycles to failure of the specimen austenitized at $1175^{\circ}C$ drastically increased with increasing tempering temperature. As tempering temperature increased from 500 to $620^{\circ}C$, the volume fraction and average size of carbides (MC or M6C) did not significantly changed, while hardness decreased drastically. The reduced hardness is due to the softening of matrix, which increased the resistance of the fatigue crack propagation. For a practical application, powder compacting test were also conducted with the P/M high speed steel punches tempered at 500, 580, and $620^{\circ}C$. The number of compacting cycles to failure of the punches also increased with increasing tempering temperature.

  • PDF