Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.2.146

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test  

Lee, Dong-Ki (Department of Materials Science & Engineering, University of Incheon)
Lee, Seong-Min (Department of Materials Science & Engineering, University of Incheon)
Publication Information
Korean Journal of Metals and Materials / v.50, no.2, 2012 , pp. 146-151 More about this Journal
Abstract
The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).
Keywords
single crystal silicon; fracture strength; crack; loading rate; crystal structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. M. Lee, J. Kor. Inst. Met. & Mater. 43, 62 (2005).
2 S. M. Lee, S. M. Sim, Y. W. Chung, Y. K. Jang, and H. K. Cho, Jpn. J. Appl. Phys. 36, 3374 (1997).   DOI
3 Z. J. Pei, Mach. Tool. Manuf. 42, 385 (2002).   DOI   ScienceOn
4 S. M. Lee, Sur. Rev. and Lett. 17, 323 (2010).   DOI   ScienceOn
5 D. Broek, Elementary Engineering Fracture Mechanics, p.170, Kluwer Academic (1983).
6 J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging, p.422, Van Nostrand Reinhold (1993).
7 Z. J. Pei, Graham R. Fisher, and J. Liu, Int. J. Mach. Tool. Manu. 48, 1297 (2008).   DOI   ScienceOn
8 Z. J. Pei, S. R. Billingsley, and S. Miura, Int. J. Mach. Tool. Manu. 39, 1103 (1999).   DOI   ScienceOn
9 R. Perez and P. Gumbsch, Phys. Rev. Lett. 84, 5347 (2000).   DOI   ScienceOn
10 R. Perez and P. Gumbsch, Acta Mater. 48, 4517 (2000).   DOI   ScienceOn
11 D. K. Lee, T. G. Lee, and S. M. Lee, Korean J. Met. Mater. 49, 726 (2011).
12 G. A. Wolff, J. Electrochem. Soc. 110, 524 (1963).   DOI
13 D. Sherman and I. Be'ery, J. Mech. Phys. Solids 52, 1743 (2004).   DOI   ScienceOn
14 D. Sherman and I. Be'ery, Scr. Mater. 49, 551 (2003).   DOI   ScienceOn
15 D. Sherman, J. Mech. Phys. Solids 53, 2742 (2005).   DOI   ScienceOn