• Title/Summary/Keyword: 3 차원 측정기

Search Result 169, Processing Time 0.027 seconds

Distance Measurement of Small Moving Object using Infrared Stereo Camera (적외선 스테레오 카메라를 이용한 소형 이동체의 거리 측정)

  • Oh, Jun-Ho;Lee, Sang-Hwa;Lee, Boo-Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.53-61
    • /
    • 2012
  • This paper proposes a real-time distance measurement system of high temperature and high speed target using infrared stereo camera. We construct an infrared stereo camera system that measure the difference between target and background temperatures for automatic target measurement. First, the proposed method detects target region based on target motion and intensity variation of local region using difference between target and background temperatures. Second, stereo matching by left and right target information is used to estimate disparity about real-time distance of target. In the proposed method using infrared stereo camera system, we compare distances in three dimension trajectory measuring instrument and in infrared stereo camera measurement. In this experiment from three video data, the result shows an average 9.68% distance error rate. The proposed method is suitable for distance and position measurement of varied targets using infrared stereo system.

Effect of size and slope angle of tooth-shaped asperity on shear fracturing characteristics (삼각형 돌출부의 크기 및 경사각이 전단파괴 형상 특성에 미치는 영향)

  • Kim, Won-Keun;Choi, Woo-Yong;Park, Jong-Deok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.431-442
    • /
    • 2013
  • Most of previous studies have insufficiently investigated the shear behavior and fracturing characteristics, experimentally in respect to the change of size of tooth-shaped surface asperity such as length and slope angle in a broad range. This study investigates the influence of the length and slope angle of a tooth-shaped surface asperity on the fracturing characteristics and the interface shear strength by using direct shear test apparatus. A total of 36 interface direct shear tests were conducted by changing the three types of slope angle of surface asperity, four type of length, and three types of normal stress. The shape of fractured surface after the test was quantified by using a three-dimensional surface roughness measurement apparatus. Through the experimental test results, the characteristics of fractured shape of surface asperity according to the normal stress were investigated. In addition, fractured length and height were quantified at each slope angle of surface asperity under a certain normal stress condition.

Anti-wrinkle Effect of Cosmetics Containing Duchesnea indica Extract (사매추출물을 함유하는 화장품의 주름 개선 효과)

  • Yang, Woong-Suk;Kim, Young-Min;Kim, Ee-Hwa;Seu, Young-Bae;Yang, Yoon-Jung;Kim, Hyun-Woo;Kang, Se Chan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.281-288
    • /
    • 2010
  • In this study, we investigated anti-oxidative effects of Duchesnea indica extracts by using Oxygen Radical Absorbance Capacity (ORAC). The extracts were prepared with 0 %, 30 %, 50 %, 70 % and 100 % aqueous ethanol respectively. The 30 % EtOH D. indica extract showed higher ORAC activity than the other extracts. Therefore, we performed in vitro studies on cytotoxicity of NIH-3T3 cells and MMP-8 collagenase inhibition using by the 30 % EtOH extract. The 30 % EtOH extract showed no cytotoxicity and significant inhibition on MMP-8 collagenase. And we performed clinical studies for the anti-wrinkle effect of the Di-Wrinkle Free Cream. The cream formula was prepared with 2 % arbutin and 1 % D. indica extract. Twenty one healthy women volunteers, ages of 35 and 50, applied the cream on their faces twice a day for 8 weeks. The skin was evaluated with PRIMOS (phaseshift rapid in vivo measuring of human skin) system and analyzed by the student's paired t-test. The wrinkles on the eye region were reduced by 13 % based on the PRIMOS system after 8 weeks. In the safety study of the Di-Wrinkle Free Cream, no symptoms were observed such as erythema, edema, scaling, itching, stinging, burning, tightness and prickling by visual observation and medical examination of volunteers for 8 weeks. Moreover, there was no noticeable skin disorder during experience period. These results suggested that D. indica extracts could be applied as cosmeceuticals effective for anti-wrinkle.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

Measurement of Large Mirror Surface using a Laser Tracker (레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정)

  • Jo, Eun-Ha;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.331-337
    • /
    • 2013
  • A large optical surface is fabricated by grinding, polishing and figuring. The grinding process is the most rapid and has the largest amount of fabrication of all processes. If we measure the surface precisely and rapidly in the grinding process, it is possible to improve the efficiency of the fabrication process. Since the surface of grinding process is rough and not shiny, it is not easy to measure the surface using light so that we cannot use an interferometer. Therefore, we have to measure the surface using a mechanical method. We can measure the surface under the grinding process by using a laser tracker which is a portable 3-dimensional coordinate measuring machine. In this paper, we used the laser tracker to measure the surface error of 1 m diameter spherical mirror. This measurement result was compared to that of an interferometer. As a result, surface measurement error was found to be $0.2{\mu}m$ rms (root mean square) and $2.7{\mu}m$ PV (Peak to Valley), which is accurate enough to apply to the rough surface under the grinding stage.

A Study on the Improvement of Performance Testing System of Domestic Surveying Equipment (국내 측량장비 성능검사제도 개선방안 연구)

  • MIN, Kwan-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • In this paper, we proposed the improvements for performance test and surveying equipment regulations, standards, methods and procedures, depending on the need of improving the legal system for surveying equipment in a diverse and sophisticated surveying industry. This research was performed first investigating the existing legal systems(Act on the establishment and management of spatial data, Framework act on national standards, ISO 17123, JIS B 7912) with respect to the surveying equipment performance testing and the research for IOS and KOLAS suggested the improvements on the application for the surveying equipment performance testing standard. More exactly, first, two years were presented for the surveying equipment performance testing cycle considering the precise accuracy of the instrument stability, purpose and frequency of use, etc. Second, the abolition of the measurement distance by grade and the upward or cross-grade adjustment of the single prism standards about the light wave rangefinder and total station were suggested for the improvement on survey equipment performance criteria. Third, since the main function of total station is focused on a three-dimensional coordinate measurement due to the improvement of surveying equipment performance testing, it was proposed to use the precision(repeatability) of the coordinate measuring method as an evaluation method.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

Effects of Nutrient Intake and Exercise on Bone Mineral Density and Bone Mineral Density in Premenopausal Women (폐경 전 성인여성에서 영양섭취 상태와 운동이 골밀도 및 골무기질 함량에 미치는 영향)

  • 최미자
    • Journal of Nutrition and Health
    • /
    • v.35 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • This study investigated associations between calcium intake, exercise behaviors, lumbar bona mineral density (BMD), and bone mineral content (BMC) among 79 premenopausal women (mean age = 41yr). The BMD and BMC of the lumbar spine (L$_2$-L$_4$) were measured by dual energy x-ray absorptiometry. Nutrient intake was estimated by the convenient method and a quantitative food frequency questionnaire was designed for this study that included the most commonly consumed floods sources of Ca. Participants were asked to identify all activities of exercise they had participated in including estimation of number of years of participation, number of weeks per year, number of times per week, and the number of hours per session. Participants were then categorized into the exercise group or nonexercise group (control). To meet the criteria for inclusion in the exercise group, the subjects participated more than 3 sessions per week and more than 30 minutes per session and the length of the exercise participation was at least more then 6 months. The participants were also grouped by calcium intake. The total calcium intake of all participants was estimated by dietary calcium intake and then the subjects were divided into quartiles to assess the lumbar BMD and BMC of the upper 25% (average calcium intake = 910 mg) and the lower 25% (average calcium intake = 414 mg). Results indicated that there were no significant differences in energy and calcium intake, and that there were no significant differences in lumbar BMD and BMC between participants in exercise group and the nonexercising control group. However, the exercise group had significantly lower ALP concentration than the nonexercise group. The upper 25% calcium intake group had significantly greater lumbar bone mineral density and bone mineral content than the lower 25% calcium intake group. Also the upper 25% calcium intake group had significantly lower ALP concentration than the lower 25% calcium intake group. Correlation analysis revealed that the spinal BMB was positively associated with body weight, while calcium intake was negatively associated with ALP concentration in nonexercising women. However, neither body weight nor dietary calcium intake were associated with both spinal BMD or ALP concentration in exercising women. These results suggest that calcium intake positively influence bone mineral density and bone mineral content in nonexercisulg premenopausal women. Exercise group did not affected by body weight and dietary calcium, but decreased ALP concentration than nonexercising group. Both exercise and calcium intake positively influence bone mineral density and bone mineral content in premenopausal women.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF