Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.343-344
/
2011
최근 3 차원 디스플레이 기술의 발전에 힘입어 3 차원 컨텐츠에 대한 수요도 늘고 있다. 스테레오스코픽(Stereoscopic) 렌즈를 이용하여 3 차원 컨텐츠를 만들거나 여러 장의 2 차원 영상을 이용한 3 차원 복원 연구가 활발히 진행되는 가운데 본 논문에서는 단일 2 차원 영상을 이용해서 깊이 지도를 획득하는 알고리즘을 제안한다. 단일 영상을 보고 3 차원 구조를 파악하는 인간의 시각 체계의 능력에 착안하여 본 논문에서는 단일 영상을 이용하여 깊이 정보를 추출하는 알고리즘을 제안한다. 깊이 단서들 중, 가림 단서를 소개하고 추가로 인간의 시각 체계에서 사용하는 깊이 단서들을 결합하여 기계 학습 알고리즘에 접목시킨다. 실험을 통해 우리는 제안 알고리즘이 물체의 외곽정보를 이용하여 양질의 깊이 지도를 준다는 것을 확인할 수 있다.
3차원 공간정보는 2차원에 비해 공간적 현실감이 뛰어나기 때문에 최근 경관분석,도시 계획 및 웹(Web) 을 통한 지도 서비스 분야 등에서 이에 대한 관심이 증가하고 있으나,3차원 공간 정보의 기하학적 특성상 기존의 2차원 공간정보에 비해 데이터 량이 방대해 지고 있으며 이를 활용한 또 다른 콘텐츠 제작과 빠르고 효율적인 처리에 많은 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로 위성 및 항공으로부터 획득한 DEM(Digital Elevation Model)을 이용하여 생성된 3차 원의 지형정보와 도시 모델링 및 텍스처 맵핑 과정을 통해 획득한 정보를 기반으로 하여 각각의 위치에 카메라를 설정하고, 설정된 카메라 위치를 기반으로 Camera Matrix를 구한다. 이렇게 획득한 카메라의 정보엔 깊이 정보를 포함하고 있는데,깊이 정보를 기반으로 하여 3차원의 워핑(Warping)작업을 통해 계층적 핍이 영상(LDI)를 생성하고,생성된 계층적 깊이 영상을 이용하여 3차원의 공간정보를 구현한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.73-74
/
2015
3 차원 컨텐츠 제작은 많은 관심을 받고 있는 분야이다. 변위 지도로 표현 가능한 깊이 정보는 3 차원 컨텐츠를 생성하는데 필수적이다. 본 논문에서는 깊이 카메라 및 스테레오 카메라를 이용하여 정확한 변위 지도를 생성하는 방법을 제안한다. 제안하는 방법은 스테레오 영상 사이의 변위를 예측하기 위해서 깊이 카메라 정보를 3 차원 워핑 방식에 의해서 좌우 카메라 위치로 투영한다. 투영된 깊이 정보는 스테레오 영상의 크기에 맞춰서 업샘플링된다. 최종적으로 업샘플링된 깊이 카메라 정보와 스테레오 정보가 결합되어 정확한 변위 지도를 생성한다. 실험 결과는 제안하는 방법이 기존의 단일 센서를 이용한 방식에 비해서 좀더 정확한 결과를 생성함을 보여준다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.8C
/
pp.782-789
/
2009
In this paper, we propose an algorithm for creating stereoscopic video from a monoscopic video. Parallel straight lines in a 3D space get narrower as they are farther from the perspective images on a 2D plane and finally meet at one point that is called a vanishing point. A viewer uses depth perception clues called a vanishing point which is the farthest from a viewer's viewpoint in order to perceive depth information from objects and surroundings thereof to the viewer. The viewer estimates the vanishing point with geometrical features in monoscopic images, and can perceive the depth information with the relationship between the position of the vanishing point and the viewer's viewpoint. In this paper, we propose a method to estimate a vanishing point with edge direction histogram in a general monoscopic image and to create a depth map depending on the position of the vanishing point. With the conversion method proposed through the experimental results, it is seen that stable stereoscopic conversion of a given monoscopic video is achieved.
This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.
3D video is regarded as the next generation contents in numerous applications. The 2D-to-3D video conversion technologies are strongly required to resolve a lack of 3D videos during the period of transition to the full ripe 3D video era. In 2D-to-3D conversion methods, after the depth image of each scene in 2D video is estimated, stereoscopic video is synthesized using DIBR (Depth Image Based Rendering) technologies. This paper proposes a novel depth fusion algorithm that integrates multiple depth cues contained in 2D video to generate stereoscopic video. For the proper depth fusion, it is checked whether some cues are reliable or not in current scene. Based on the result of the reliability tests, current scene is classified into one of 4 scene types and scene-adaptive depth fusion is applied to combine those reliable depth cues to generate the final depth information. Simulation results show that each depth cue is reasonably utilized according to scene types and final depth is generated by cues which can effectively represent the current scene.
Journal of the Institute of Convergence Signal Processing
/
v.5
no.2
/
pp.96-105
/
2004
The recovering 3D image from 2D requires the depth information for each picture element. The manual creation of those 3D models is time consuming and expensive. The goal in this paper is to estimate the relative depth information of every region from single view image with camera translation. The paper is based on the fact that the motion of every point within image which taken from camera translation depends on the depth. Motion vector using full-search motion estimation is compensated for camera rotation and zooming. We have developed a framework that estimates the average frame depth by analyzing motion vector and then calculates relative depth of region to average frame depth. Simulation results show that the depth of region belongs to a near or far object is consistent accord with relative depth that man recognizes.
In this paper, we propose a reconstruction technique of the lost hair region for 3D human actor modeling. An active depth sensor system can simultaneously capture both color and geometry information of any objects in real-time. However, it cannot acquire some regions whose surfaces are shiny and dark. Therefore, to get a natural 3D human model, the lost region in depth image should be recovered, especially human hair region. The recovery is performed using both color and depth images. We find out the hair region using color image first. After the boundary of hair region is estimated, the inside of hair region is estimated using an interpolation technique and closing operation. A 3D mesh model is generated after performing a series of operations including adaptive sampling, triangulation, mesh smoothing, and texture mapping. The proposed method can generate recovered 3D mesh stream automatically. The final 3D human model allows the user view interaction or haptic interaction in realistic broadcasting system.
Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.
The general problems of recovering 3D for 2D imagery require the depth information for each picture element form focus. The manual creation of those 3D models is consuming time and cost expensive. The goal in this paper is to simplify the depth estimation algorithm that extracts the depth information of every region from monocular image sequence with camera translation to implement 3D video in realtime. The paper is based on the property that the motion of every point within image which taken from camera translation depends on the depth information. Full-search motion estimation based on block matching algorithm is exploited at first step and ten, motion vectors are compensated for the effect by camera rotation and zooming. We have introduced the algorithm that estimates motion of object by analysis of monocular motion picture and also calculates the averages of frame depth and relative depth of region to the average depth. Simulation results show that the depth of region belongs to a near object or a distant object is in accord with relative depth that human visual system recognizes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.