• Title/Summary/Keyword: 3 점 굽힘 하중

Search Result 53, Processing Time 0.026 seconds

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Irregular Arrangement of Reference Points (참조점의 불규칙적 배치를 통한 PIC보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cho, Jae Ung;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.216-221
    • /
    • 2019
  • Piecewise integrated composite (PIC) beam has different stacking sequences for several regions with respect to their superior load-resisting capabilities. On the interest of current research is to improve bending characteristics of PIC beam, with assigning specific stacking sequence to a specific region with the help of machine learning techniques. 240 elements of from the FE model were chosen to be reference points. Preliminary FE analysis revealed triaxialities at those regularly distributed reference points to obtain learning data creation of machine learning. Triaxiality values catagorise the type of loading i.e. tension, compression or shear. Machine learning model was formulated by learning data as well as hyperparameters and proper load fidelity was suggested by tuned values of hyperparameters, however, comparatively higher nonlinearity intensive region, such as side face of the beam showed poor load fidelity. Therefore, irregular distribution of reference points, i.e., dense reference points were distributed in the severe changes of loading, on the contrary, coarse distribution for rare changes of loading, was prepared for machine learning model. FE model with irregularly distributed reference points showed better load fidelity compared to the results from the model with regular distribution of reference points.

Structural Analysis and Failure Prediction of Tape-Wrapped Structures (테이프래핑 구조물의 구조 해석 및 파단 예측)

  • Goo, Nam-Seo;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Yeol-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.17-21
    • /
    • 2004
  • Tape-wrapped structures have been generally used in nozzle parts of guided missiles. A continuous band of woven composite material is wrapped around a mandrel that is designed to produce real products. After going through a vacuum bagging process, this woven composite material is cured in a high-pressure autoclave or hydroclave. However, tape-wrapped structures are difficult to analyze because of its large thickness and inclined lay-up. The present study investigates the method of analysis and failure prediction of tape-wrapped structures. The four-point bending test and its finite element analysis were performed to study how to model tape-wrapped structures and investigate their failure characteristics.

Adaptive Three-Point Bending Controller Through Real-Time Springback Estimation for Beams (실시간 스프링백 예측을 통한 보의 3점굽힘 적응제어기 설계)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.62-68
    • /
    • 2000
  • In order to automate straightening process of deflected beams an adaptive three-point bending controller is studies which estimates and controls springback of beams under three-point bending. An analytical load-deflection model for three-point bending of beams with circular cross sections is derived nondimensionally. In spite of variation of material and process parameters this model can be applied to springback estimation by measuring real-time values of reactive load and deflection of the beam. A hydraulic punch stroke controller is designed to take real-time controls of the permanent deflection of the beam. The validity of the proposed system is verified through experiments.

  • PDF

Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials (유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험)

  • Goo, N.-S.;Yoo, K.-J.;Shin, Y.-S.;Lee, Y.-H.;Cheong, H.-Y.;Kim, B.-H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.76-82
    • /
    • 2005
  • Cable fairings of guided missiles are generally used for protection of electric cables under aerodynamic heating and mechanical loading. The stress distributions between a cable fairing and missile main body along a cable fairing are necessary for its design. In this paper, a method for bonding stress and strength analysis of a cable fairing has been investigated and its computer program developed. Tensile and three-point bending tests of generally used bonding materials were also conducted to supply basic material properties for design of cable fairings.

Optimal Section Design for Metal Press Door Impact Beam Development by 3-Point Bending Analysis (3점 굽힘 하중 해석을 통한 금속 판재형 도어 임팩트 단면형상 최적설계)

  • Kim, Sun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.166-172
    • /
    • 2019
  • A case study was performed in order to develop well-designed of thin plate door impact beam. The conventional impact beam was consisted of steel-pipe welded two brackets on the both side, which causes low productivity and high cost. In order to overcome those disadvantage, it is necessary to develop a new type of door impact; thin plate impact beam. The thin plate impact beam was not needed a welding procedure, which can lead low cost and high productivity. In order to maximally resist from an external force, the cross-section design should be well designed. 6 different cross-section design were proposed based on engineer's experience. Three point bending test was simulated those 6 different impact beam and compared the reaction forces. Among them, one case was chosen and redesigned for detail design.

Failure Prediction for Composite Materials under Flexural Loading (굽힘 하중에 의한 복합재료 파손 예측 연구)

  • Kim, Jin-Sung;Roh, Jin-Ho;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1013-1020
    • /
    • 2017
  • In this study, the failure prediction of composite laminates under flexural loading is investigated. A FEA(finite element analysis) using 2D strain-based interactive failure theory. A pregressive failure analysis was applied to FEA for stiffness degradation with failure mode each layer. A three-point bending test based on the ASTM D790 are performed for cross-ply $[0/90]_8$ and quasi-isotropic $[0/{\pm}45/90]_{2s}$ laminated composites. The accuracy of the applied failure theory is verified with the experimental results and other failure criteria such as maximum strain, maximum stress and Tsai-Wu theories.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Foam Filling Effect on Bending Collapse Characteristics for Member Section Type (부재단면 형상에 따른 부재 굽힘붕괴 특성의 폼 충진 효과)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2007
  • More diversified and strengthened safety regulations require higher safety vehicle with less weight. The structural foam can play a role for restraining section distortion of main body members undergoing bending collapse at vehicle crash. In this study, using structural foam modeling technology, validated in previous work, the bending collapse characteristics were evaluated for two types of circular and actual vehicle body frame sections. With changing the foam filling method, outer panel thickness and section shape, load carrying capability and absorbed energy were observed. The results indicate valuable design strategy for effectively elevating bending collapse performance of body members with foam filled.

Bending Collapse Characteristics of Hat Section Beam Filled with Structural Foam (폼 충진 모자단면 빔의 굽힘붕괴 특성)

  • Lee, Il-Seok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.92-99
    • /
    • 2006
  • Design capability for high safety vehicle with light weight is crucial to enhancing competitive power in vehicle market. The structural foam can contribute to restraining section distortion in body members undergoing bending collapse at vehicle crash. In this study, first, the validation of analysis model including structural foam model for simulating fracture behavior was discussed, and the bending collapse characteristics of five representative section types were analyzed and compared. Next, with changing the laminate foam shape, load carrying capability and absorbed energy were observed. The results suggests a design strategy of body members filled with laminate foam, leading to effectively elevating bending collapse characteristics with weight increase in the minimum.

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.