• Title/Summary/Keyword: 3체 운동방정식

Search Result 53, Processing Time 0.03 seconds

Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem (원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구)

  • Jung, Okchul;Ahn, Sangil;Chung, Daewon;Kim, Eunkyou;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.692-698
    • /
    • 2015
  • This paper represents a trajectory design and analysis technique which uses invariant manifolds of the circular restricted three body problem. Instead of the classical patched conic method based on 2-body problem, the equation of motion and dynamical behavior of spacecraft in the circular restricted 3-body problem are introduced, and the characteristics of Lyapunov orbits near libration points and their invariant manifolds are covered in this paper. The trajectories from/to Lyapunov orbits are numerically generated with invariant manifolds in the Earth-moon system. The trajectories in the Sun-Jupiter system are also analyzed with various initial conditions in the boundary surface. These methods can be effectively applied to interplanetary trajectory designs.

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

An Investigation of Dynamic Stability of Self-Compensating Dynamic Balancer (자기보상 동적균형기의 동적안정성 연구)

  • Lee, Jongkil
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • Self-Compensating Dynamic Balancer (SCDB) is composed of a circular disk with a groove containing spherical balls and a low viscosity damping fluid. To investigate the stability of the motion equations these equations are perturbed and the resulting perturbation equations are analyzed further to determine whether the perturbations grow or decay with dimensionless time. Based on the results of stability investigation, ball positions that result in a balanced system are stable above the critical speed for .betha.' = 3.8. At critical speed the perturbed motion is said to be stable for .betha.' = 23. However, the system is unstable below critical speed in any case of .betha.'.

  • PDF

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models (점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구)

  • Koh, Hyun Moo;Kim, Jae Kwan;Kwon, Ki Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.453-462
    • /
    • 1994
  • Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and point source models of which fault-slip functions are defined as ramp functions. In this paper, the earth is modeled as being composed of horizontally stratified layers, with uniform material properties for each layer. The partial differential equations for the seismic motion in each layer are solved using a Fourier Hankel transform approach. Time histories and frequency contents of accelerations and displacements due to a vertical dip-slip and strike-slip point source located in the underlain half space are calculated at the layer interfaces using the developed programs and their characteristics are represented.

  • PDF

3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System (케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

Mathematical Modelling and Chaotic Behavior Analysis of Cyber Addiction (사이버 중독의 수학적 모델링과 비선형 거동 해석)

  • Kim, Myung-Mi;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.245-250
    • /
    • 2014
  • Addiction can be largely divided into two categories. One is called medium addiction in which medium itself causes an addiction. Another is called cause addiction that brings addiction through combination of sensitive self and latent personal action. The medium addiction involves addiction phenomena directly caused by illegal drugs, alcohol and various other chemicals. The cause addiction is dependent on personal sensitivities as a sensitive problem of personal and includes cyber addictions such as shopping, work, game, internet, TV, and gambling. In this paper we propose two-dimensional addiction model that are equivalent to using an R-L-C series circuit of Electrical circuit and a Spring-Damper-mass of mechanical system. We also organize a Duffing equation that is added a nonlinear term in the proposed two-dimensional addiction model. We represent periodic motion and chaotic motion as time series and phase portrait according to parameter's variation. We confirm that among parameters chaotic motion had addicted state and periodic motion caused by change in control coefficient had pre-addiction state.

Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions (4원법과 유한요소를 이용한 유연체 동역학의 해석기법)

  • Lee, Dong-Hyun;Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2005
  • This paper deals with formulations of the energy equilibrium equation by an introduction of the algebraic description, quarternion, which meets conservations of system energy for the equation of motion. Then the equation is discretized to analyze the dynamits analysis of flexible multibody systems in such a way that the work done by the constrained force completely is eliminated. Meanwhile, Rodrigues parameters we used to express the finite rotation lot the proposed method. This method lot the initial essential step to a guarantee of developments of the 3D dynamical problem provides unconditionally stable conditions for the nonlinear problems through the numerical examples.

A Formulation of the Differential Equation on the Equations of Motion and Dynamic Analysis for the Constrained Multibody Systems (구속된 다물체 시스템에 대한 운동 방정식의 미분 방정식화 및 동역학 해석)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.

  • PDF

Analysis of Motion Response and Drift Force in Waves for the Floating-Type Ocean Monitoring Facilities (부유식 해상관측시설의 파랑중 운동 및 표류력 해석)

  • YOON Gil Su;KIM Yong Jig;KIM Dong Jun;KANG Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 1998
  • A three-dimensional numerical method based on the Green's integral equation is developed to predict the motion response and drift force in waves for the ocean monitoring facilities. In this method, we use source and doublet distribution, and triangular and rectangular eliments. To eliminate the irregular frequency phenomenon, the method of improved integral equation is applied and the time-mean drift force is calculated by the method of direct pressure integration over the body surface. To conform the validity of the present numerical method, some calculations for the floating sphere are performed and it is shown that the present method provides sufficiently reliable results. As a calculation example for the real facilities, the motion response and the drift force of the vertical cylinder type ocean monitoring buoy with 2.6 m diameter and 3,77 m draft are calculated and discussed. The obtained results of motion response can be used to determine the shape and dimension of the buoy to reduce the motion response, and other data such as the effect of motion reduction due to a damper can be predictable through these motion calculations. Also, the calculation results of drift force can be used in the design procedure of mooring system to predict the maximum wave load acting on the mooring system. The present method has, in principle, no restriction in the application to the arbitrary shape facilities. So, this method can be a robust tool for the design, installation, and operation of various kinds of the floating-type ocean monitoring facilities.

  • PDF