• Title/Summary/Keyword: 3차원 인체 측정

Search Result 118, Processing Time 0.034 seconds

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Variation of Dose due to the Wound Electrode of Ionization Chamber (굴곡이 있는 전리함 집전극에 기인한 선량 변화)

  • Lee, Byung-Koo;Kim, Jung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.203-209
    • /
    • 2008
  • Nowadays the risk of radiation is getting more serious, so we must know the exact dose that was irradiated, Because very high radiation dose is used in radiation therapy field. We used the ionization chamber which measure the radiation dose in this study. We tried to know the incorrect result from the distortion of geometric structure of ionization chamber and we studied how to find the distortion of geometric structure of ionization chamber. We used a radio fluoroscopy to find the wound degree of electrode of ionization chamber and a reconstructed 3D CT image to analyze the wound degree of electrode quantitatively. we measured degree of distortion by comparing with absorbed dose of normal electrode and wound electrode. The comparative result is not absolute dosimetry at specific point but relative dosimetry between thats. We measured 4 MV, 10MV photon with same absorbed dose and dose rate. The degree of distortion of wound electrode was totally $5.5{\sim}7.2%$, and there was no difference between two energies. The variation induced from radiation dose to be irradiated and dose rate, and the degree of distortion from wound direction also was almost similar value. We could find that the geometric structure of ionization chamber that can influence a basic measurement of radiation dose can be changed by old usage and inattention of management in this study, especially winding of electrode can be happened, in radiation therapy field, It is very important to keep precise radiation dose quantitatively.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

A Study of Cancer Incidence Rate due to Photoneutron Dose during Radiation Therapy for Prostate Cancer Patients (전립샘암 환자의 방사선 치료 시 광중성자 선량으로 인한 암 발생률의 연구)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.471-476
    • /
    • 2022
  • The purpose of this study was to study the probability of cancer occurrence due to photoneutron dose exposure of the colon and thyroid gland, which are normal organs, in 3D CRT, IMRT 5 portals, and IMRT 9 portals, which are radiotherapy methods for prostate cancer. The total prescribed dose for prostate cancer was 6600 cGy, 220 cGy per dose, and 30 divided irradiations were applied for the total number of times. After setting up the Rando phantom on the treatment table (couch) of the medical linear accelerator used in the experiment, an optically stimulated luminescence albedo neutron dosimeter was placed on the corresponding area of the large intestine and thyroid gland of the phantom for measurement. During 3D CRT of prostate cancer, the probability of secondary cancer due to photoneutron dose to the colon and thyroid gland, which are normal organs, was 1.8 per 10,000 people. And IMRT 5 portals were 8.7 per 10,000 people, which was about 5 times larger than 3D CRT. IMRT 9 portals derived the result that there is a probability that 1.2 people per 1,000 people will develop cancer. Based on this study, the risk of secondary radiation exposure due to the dose of photoneutrons generated during radiation therapy is studied, and it is thought that it will be used as useful data for radiation protection in relation to the stochastic effect of radiation in the future.

The Consideration about Heavy Metal Contamination of Room and Worker in a Workshop (공작실에서 실내 및 작업종사자의 중금속 오염도에 관한 고찰)

  • Kim Jeong-Ho;Kim Gha-Jung;Kim Sung-Ki;Bea Suk-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • Purpose : Heavy metal use when producing the block from the workshop. At this time, production of heavy metal dust and fume gives risk in human. This like heavy metal to improve seriousness through measurement and analysis. And by the quest in solution is purpose of this thesis. Materials and Methods : Organization is Inductively Coupled Plasma Atomic Emission Spectrometer, and the object is Deajeon city 4 workshops in university hospital radiation oncology (Bismuth, Lead, Tin and cadmium). Method is the ppb the pumping it does at unit, comparison analysis. And the Calculation heavy metal standard level in air through heavy metal standard level in body and blood, so Heavy metal temporary standard set. Results : Subterranean existence room air quality the administration laws appointed Lead and Cadmium's exposure recommend that it is $3{\mu}g/m^3\;and\;2{\mu}g/m^3$. And Bismuth and Tin decides $7{\mu}g/m^3\;and\;6{\mu}g/m^3$ through standard level in air heavy metal and standard level in body and blood. Heavy metal measurement level of workshops in 4 university hospital Daejeon city compares with work existence and nonexistence. On work nonexistence almost measurement level is below the recommend level. But work existence case express high level. Also consequently in composition ratio of the block is continuous with the detection ratio. Conclusion : Worker's heavy metal contamination imbrued serious for solution founds basic part. In hospital may operation on local air exhauster and periodical efficiency check, protector offer, et al. And worker have a correct understanding part of heavy metal contamination, and have continuous interest, health control. Finally, learned society sphere administer to establishment standard level and periodical measurement. And it founds basic solution plan of periodical special health checkup.

  • PDF

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics (방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석)

  • Shin, Yerin;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.698-706
    • /
    • 2019
  • Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Preparation and Characteristics of Bread by Medicinal Herb Composites with Immunostimulating Activity (면역활성을 가진 생약복합물을 이용한 빵의 제조 및 특성)

  • Kim, Hee-Suk;Kang, Jin-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • In this study, the breads with medicinal herbs (MH) composites showing immunostimulating activity were prepared and their characteristics were examined. Fourteen kinds of medicinal herbs were extracted with hot water and divided into 3 groups (MH-1, MH-2, MH-3) based on their contents. All groups showed immunostimulating activity in terms of macrophage phagocytosis, nitrite production, cytostatic activity and cytokine production. In the preparation of breads containing MH extracts of various contents (0, 30, 50, 70, and 100%), there was no significant difference among dough pHs of all groups after first fermentation, but loaf volume was significantly (p<0.05) increased in 70% added group while decreased in 30%, 50%, and 100% added groups compared to the control. The "a" and "b" values of bread crumb increased with the content of MH extracts while "L" value decreased, but these values of bread crust were similar to the control group. Most improvements in hardness, adhesiveness, gumminess and chewiness of bread were noticed by the addition of 70% MH extracts, but those of springiness, cohesiveness and resilience were mostly by the 50% addition ones. Through the sensory evaluation, it was revealed that mouth feeling, taste and overall preference decreased at breads containing 70% and 100% extracts, although appearance and crumb texture were not significantly (p<0.05) different among all groups.