Browse > Article
http://dx.doi.org/10.14478/ace.2019.1081

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics  

Shin, Yerin (Graduate school of Energy Science and Technology, Chungnam National University)
Kim, So Yeon (Graduate school of Energy Science and Technology, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 698-706 More about this Journal
Abstract
Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.
Keywords
Soft actuator; Hydrogel; Stimuli-responsive polymer; Acrylic acid; Poly(vinyl alcohol);
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Ghobashy and M. A. Elhady, pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal, Radiat. Phys. Chem., 134, 47-55 (2017).   DOI
2 A. E. H. Ali and E. S. A. Hegazy, Radiation synthesis of poly (ethylene glycol)/acrylic acid hydrogel as carrier for site specific drug delivery, J. Biomed. Mater. Res. B, 81, 168-174 (2007).
3 J. Shang, Z. Shao, and X. Chen, Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel, Biomacromolecules, 9, 1208-1213 (2008).   DOI
4 D. Morales, E. Palleau, M. D. Dickey, and O. D. Velev, Electro-actuated hydrogel walkers with dual responsive legs, Soft Matter, 10, 1337-1348 (2014).   DOI
5 M. Rajagopalan and I.-K. Oh, Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide, ACS Nano., 5, 2248-2256 (2011).   DOI
6 L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, Soft actuators for small-scale robotics, Adv. Mater., 29, 1603483 (2017).   DOI
7 G. Agarwal, N. Besuchet, B. Audergon, and J. Paik, Stretchable materials for robust soft actuators towards assistive wearable devices, Sci. Rep., 6, 34224 (2016).   DOI
8 E. T. Roche, R. Wohlfarth, J. T. Overvelde, N. V. Vasilyev, F. A. Pigula, D. J. Mooney, K. Bertoldi, and C. J. Walsh, A bioinspired soft actuated material, Adv. Mater., 26, 1200-1206 (2014).   DOI
9 I. Must, F. Kaasik, I. Poldsalu, L. Mihkels, U. Johanson, A. Punning, and A. Aabloo, Ionic and capacitive artificial muscle for biomimetic soft robotics, Adv. Eng. Mater., 17, 84-94 (2015).   DOI
10 Y. L. Park, B. R. Chen, and R. J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors, IEEE Sens. J., 12, 2711-2718 (2012).   DOI
11 D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev., 117, 11239-11268 (2017).   DOI
12 Y. S. Song, Y. Sun, R. Van Den Brand, J. Von Zitzewitz, S. Micera, G. Courtine, and J. Paik, Soft robot for gait rehabilitation of spinalized rodents, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 3-7, Tokyo, Japan, (2013).
13 F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Classification, processing and application of hydrogels: A review, Mater. Sci. Eng. C, 57, 414-433 (2015).   DOI
14 S. Kim, C. Laschi, and B. Trimmer, Soft robotics: A bioinspired evolution in robotics, Trends Biotechnol., 31, 287-294 (2013).   DOI
15 J. Kopecek and J. Yang, Hydrogels as smart biomaterials, Polym. Int., 56, 1078-1098 (2007).   DOI
16 M. Hamidi, A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery, Adv. Drug Deliv. Rev., 60, 1638-1649 (2008).   DOI
17 S. Y. Kim, Research trends on polymeric hydrogels for tissue engineering applications, Tissue Eng. Regen. Med., 5, 14-25 (2008).
18 C. Lee, J. Shin, J. S. Lee, E. Byun, J. H. Ryu, S. H. Um, D. I. Kim, H. Lee, and S. W. Cho, Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility, Biomacromolecules, 14, 2004-2013 (2013).   DOI
19 N. Bhattarai, J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Deliv. Rev., 62, 83-99 (2010).   DOI
20 S. Van Vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromolecules, 12, 1387-1408 (2011).   DOI
21 X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, and P. X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials, 122, 34-47 (2017).   DOI
22 J. Choi, B. Pant, C. Lee, M. Park, S. J. Park, and H. Y. Kim, Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique, J. Ind. Eng. Chem., 47, 41-45 (2017).   DOI
23 D. H. Yang, D. I. Seo, D. W. Lee, S. H. Bhang, K. Park, G. Jang, C. H. Kim, and H. J. Chun, Preparation and evaluation of visible-light cured gylcol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing, J. Ind. Eng. Chem., 53, 360-370 (2017).   DOI
24 W. E. Hennink and C. F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Del. Rev., 64, 223-236 (2012).   DOI
25 J. Maitra and V. K. Shukla, Cross-linking in hydrogels - A review, Am. J. Polym. Sci., 4, 25-31 (2014).
26 N. Sheikh, L. Jalili, and F. Anvari, A study on the swelling behavior of poly (acrylic acid) hydrogels obtained by electron beam crosslinking, Radiat. Phys. Chem., 79, 735-739 (2010).   DOI
27 M. Chen, J. Zhu, G. Qi, C. He, and H. Wang, Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method, Mater. Lett., 89, 104-107 (2012).   DOI
28 K. R. Park and Y. C. Nho, Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties, Radiat. Phys. Chem., 67, 361-365 (2003).   DOI
29 Z. Ajji, I. Othman, and J. Rosiak, Production of hydrogel wound dressings using gamma radiation, Nucl. Instrum. Methods Phys. Res. B, 229, 375-380 (2005).   DOI
30 S. G. A. Alla, M. Sen, and A. W. M. El-Naggar, Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation, Carbohydr. Polym., 89, 478-485 (2012).   DOI
31 E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 6, 105-121 (2015).   DOI
32 L. Varshney, Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing, Nucl. Instrum. Methods Phys. Res. B, 255, 343-349 (2007).   DOI