• Title/Summary/Keyword: 3차원 유한요소

Search Result 1,510, Processing Time 0.036 seconds

Analysis of Extremely-Low-Frequency Magnetic Fields around Bus Bars and shielding effect of a Shield Plate using 3D Finite Element Method (3차원 유한요소법을 이용한 분전반 모선의 극저주파 자기장 해석과 차폐판에 의한 차폐 효과 분석)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.786-787
    • /
    • 2008
  • 본 논문에서는 1층 주거지역에 미치는 지하 분전반 모선으로부터 발생하는 극저주파 자기장을 억제하기 위한 연구의 일환으로 지하 분전반을 연구모델로 선정한 후 3차원 전자장 유한요소 해석을 이용하여 누설 자속을 분석하였다. 1층 침실에 미치는 자기장을 억제하기 위해 알루미늄 재질의 차폐판을 도입하여 차폐효과를 확인하였다.

  • PDF

Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method (CFD기법을 연계한 자이로콥터의 전산구조동역학 해석)

  • Kim Hyun-Jung;Jung Se-Un;Park Hyo-Keun;Yang Chang-Hak;Kim Dong-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.295-302
    • /
    • 2006
  • In this study, computational structural dynamic analyses of a gyrocopter have been conducted considering unsteady dynamic hub-loads due to rotating blades. 3D CATIA models with detailed mechanical parts we constructed and virtually assembled into the complete aircraft configuration. The dynamic loading generated by rotating blades in the forward flight condition are calculated by a commercial computational fluid dynamics (CFD) code such as FLUENT. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics of the gyrocopter. Free vibration analysis results for different fuel and pilot conditions, frequency responses and transient responses for critical flight conditions are also presented in detail.

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

Nonlinear Finite Element Analysis of Reinforced Concrete Columns (철근콘크리트 기둥의 3차원 비선형 유한요소 해석)

  • Kwon Minho;Chang Chun Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.397-406
    • /
    • 2004
  • A recently developed three dimensional concrete law is used for the analysis of concrete specimens and reinforced concrete columns subjected to different load patterns. The hypoelastic, orthotropic concrete constitutive model includes coupling between the deviatoric and volumetric stresses, works with both proportional and non-proportional loads and is implemented as a strain driven module. The FE implementation is based on the smeared crack approach with rotating cracks parallel to the principal strain directions. The concrete model is validated through correlated studies with: (a) experimental tests on confined concrete cylinders; (b) experimental results on three reinforced concrete columns tested at the University of California, San Diego. The correlations are overall very good, and the FE responses capture all the main phenomena observed in the experimental tests.

Internal Wave Generation with Level Set Parallel Finite Element Approach (레블셋 병렬유한요소 기법을 이용한 파랑 내부 조파)

  • Lee, Haegyun;Lee, Nam-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6B
    • /
    • pp.379-385
    • /
    • 2012
  • Recent development of computing power and theoretical advances in computational fluid dynamics have made possible numerical simulations of water waves with full Navier-Stokes equations. In this study, an internal wave maker using the mass source function approach was combined with the level set finite element method for generation of waves. The model is first applied to the two-dimensional linear wave generation and propagation. Then, it is applied to the three-dimensional simulation of the same problem. To effectively utilize computational resources and enhance the speed of execution, parallel algorithms are developed and applied for the three-dimensional problem. The results of numerical simulations are compared with theoretical values and good agreements are observed.

An Efficient Algorithm for Rebar Element Generation Using 3D CAD Data (3D CAD 데이터 기반의 효율적 철근 요소 생성 알고리즘)

  • Cho, Kyung-Jin;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.475-485
    • /
    • 2009
  • In this paper a two-step algorithm is proposed to efficiently generate rebar elements from 3D CAD data in the context of CAD/CAE data transfer. The first step is an algorithm to identify various type rebar objects and their attributes by analyzing 3D CAD data in STEP format, which is one of the international data standards. The second algorithmic step is a procedure to generate one-dimensional rebar elements from the object data made through the first step for finite element analysis or other CAE tasks. Successful rebar element data generation from real 3D CAD data for a reinforced concrete structure shows the efficacy of the proposed algorithm.

The simulation system for ceramic drying processes (세라믹 건조공정 시뮬레이션 시스템)

  • 금영탁;김준한;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.120-126
    • /
    • 2001
  • The simulation system for analyzing the ceramic drying process is developed. This system consists of 3 parts: pre-processor, analyzer, and post-processor. The pre-processor creates 3-dimensional ceramics, makes finite-element models, and prepares analyzers input. The analyzer computes temperature, moisture, residual stress, displacement, etc. during the drying process using the information about finite-element model, material property, and boundary condition provided by the pre-processor. In post-processor, the analyzers results are visualized to help designers evaluation of the drying of the ceramic.

  • PDF

3-D Finite Element Model for Predicting Bending and Shear Failure of RC Beams (철근콘크리트 보의 휨 및 전단파괴 예측의 3차원 유한요소 모델)

  • Cho, Chang-Geun;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.109-116
    • /
    • 2010
  • Three-dimensional finite element model for analysis of reinforced concrete members was developed in order to investigate the prediction of bending and shear failure of reinforced concrete beams. A failure surface of concrete in strain space was newly proposed in order to predict accurately the ductile response of concrete under multi-axial confining stresses. Cracking of concrete in triaxial state was incorporated with considering the tensile strain-softening behavior of cracked concrete as well as the cracked shear behavior on cracked surface of concrete caused by aggregate interlocking and, dowel action. By correlation study on failure types of bending and shear of beams, current finite element model was well simulated not only the type of ductile bending failure of under-reinforced beams but also the type of brittle shear failure of no-stirruped reinforced concrete beam.