• Title/Summary/Keyword: 3차원 오차

Search Result 1,047, Processing Time 0.022 seconds

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Design and Experiments of Cheap Handhold 3-Dimensional Motion Tracker (저가격 핸드헬드 3차원 동작 추적 장치의 설계와 실험)

  • Kim, Hyun-Seok;Lee, Sang-Hoon;Suh, Il-Hong;Park, Myung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2392-2394
    • /
    • 2004
  • 핸드헬드 3차원 동작 추적 장치는 새로운 Human Computer Interaction의 도구로 Wearable Computing, Ubiquitous Computing, 3차원 Game 등의 분야에 요구되어 지고 있다. 본 논문에서는 저가의 관성 센서를 사용한 소형의 핸드헬드 3차원 동작 추적 장치를 설계하였다. 특히, 저가의 관성 센서를 적용하는데 있어 센서신호처리의 문제점을 제시하고, 문제점을 제거하기 위한 신호 처리 방법과 관성센서의 누적오차를 줄이기 위한 방법을 제안하고 실험으로 입증하였다.

  • PDF

Regularization of 3D Building Models (3차원 건물모델의 정규화)

  • Kim, Seong-Joon;Lee, Im-Pyeong
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.296-300
    • /
    • 2009
  • 가상현실이나 인터넷 웹지도 서비스와 같이 3차원의 실세계를 시스템 상에 그대로 재현(reconstruction)하기 위해서는 정교하고 세밀한 3차원 도시모델이 필수적이다. 이러한 3차원 도시모델의 자동생성은 원격탐사 및 사진측량 분야에서 많은 연구가 수행되고 있다. 이러한 연구들은 다양한 센서 데이터와 기 구축되어 있는 GIS자료를 이용하여 건물, 도로, 지형 등의 도시모델을 자동으로 생성하고자 한다. 그러나 대부분의 연구에서 추출한 각 기본요소(primitives)-평면패치(planar patches), 에지(edges), 모서리(corners)에 대한 국부적인 정제(refinement)는 수행하였으나, 생성한 건물 모델에 대한 광역적인 조정을 통한 정규화에 대한 연구는 미비한 상태이다. 본 연구에서는 다양한 데이터로부터 생성된 B-rep (boundary representation) 형태의 건물 모델에 대하여 기하학적인 제약요소(constraints)를 이용한 정규화(regularization) 방법론을 제시하고자 한다. 제안하는 방법은 건물의 Domain Knowledge에 기반하여 도출한 건물을 구성하는 기본요소(primitives)간의 인접성, 직교성, 평행성, 교차성 등의 다양한 제약조건을 이용하여 광역적으로 조정한다. 시뮬레이션 데이터에 적용한 결과의 분석을 통해 제안된 정규화 방법을 통해 오차가 포함된 건물모델이 보다 정형화된 형태로 조정되었음을 확인하였다.

  • PDF

Estimation Techniques for Three-Dimensional Target Location Based on Linear Least Squared Error Algorithm (선형 최소제곱오차 알고리즘을 응용한 3차원 표적 위치 추정 기법)

  • Han, Jeong Jae;Jung, Yoonhwan;Noh, Sanguk;Park, So Ryoung;Kang, Dokeun;Choi, Wonkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.715-722
    • /
    • 2016
  • In this paper, by applying the linear least squared error algorithm, we derive an estimation technique for three dimensional target location when a number of radars are used in detecting a target. The proposed technique is then enhanced by combining GPS information and by assigning variable weights to information sources. The enhanced performance of proposed techniques is confirmed via simulation. It is also observed from simulation results that the performance is robust to the uncertainty of information.

자유곡면의 연마가공을 위한 로봇 프로그래밍 시스템 개발

  • 황선양;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.284-289
    • /
    • 1991
  • 3차원 자유곡면을 볼엔드밀을 사용하여 금형가공을 할 경우, 가공면에는 공구경로에 따른 흔적과 NC공작기계의 직선보간시 발생되는 가공오차에 의하여 공작물 상에 가공오차가 필연적으로 발생되게 된다. 따라서 공작기계상에 서 금형가공을 수행한 후에는 가공오차를 제거하고 금형의 표면을 매끄럽게 하기위하여 연마작업이 픽수적으로 요구 되고있다. 본 연구에서는 3차원 자유곡면으로 이루어진 금형의 연마가공에 로봇을 도입하고, 이를 위한 로봇 작업단의 경로 제어시비전문가라 할지라도 CAM시스템으로 부터 금형 가공용 NC공작기계의 공구경로데이타(Cutter Location Data)를 받으면 자유곡면을 모형화한 후 자유곡면의 법선벡터와 연마로봇 작업단의 위치벡터를 자동으로 생성하고, 그에 따른 로봇의 작업명령을 자동으로 생성할 수 있는 CAMPoli 오프라인 로봇 프로그래밍 시스템을 개발하였다. CAMPoli시스템은 마이크로소프트사의 WINDOWS/386 오퍼레이팅 시스템을 이용하여 IBM-PC/386 상에서 개발되었으며 그주요한 내용들은 다음과 같다. i) CAM시스템으로 부터 입력된 CL-데이타로부터 연마면에 대한 자유곡면을 생성하고, ii) 연마공정의 데이타베이스에 기초한 연마면수의 지정 및 변경을 수행하고, iii) 자유곡면 연마를 위한 로봇 작업단의 위치벡터와 법선벡터를 계산하고, iv) 기존의 로봇언어를 이용한 오프라인 소스프로그램(Source Program)을 생성 및 그래픽 시뮬레이션 하는 과정으로 구축되었다.

The Analysis of 3D Position Accuracy of Multi-Looking Camera (다각촬영카메라의 3차원 위치정확도 분석)

  • Go, Jong-Sik;Choi, Yoon-Soo;Jang, Se-Jin;Lee, Ki-Wook
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.33-42
    • /
    • 2011
  • Since the method of generating 3D Spatial Information using aerial photographs was introduced, lots of researches on effective generation methods and applications have been performed. Nadir and oblique imagery are acquired in a same time by Pictometry system, and then 3D positioning is processed as Multi-Looking Camera procedure. In this procedure, the number of GCPs is the main factor which can affect the accuracy of true-orthoimage. In this study, 3D positioning accuracies of true-orthoimages which had been generated using various number of GCPs were estimated. Also, the standard of GCP number and distribution were proposed.

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom (3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가)

  • Lee, Sang-Uk;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.607-614
    • /
    • 2016
  • The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

Implementation of Multiview Calibration System for An Effective 3D Display (효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현)

  • Bae Kyung-Hoon;Park Jae-Sung;Yi Dong-Sik;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.36-45
    • /
    • 2006
  • In this paper, multiview calibration system for an effective 3D display is proposed. This system can be obtain 4-view image from multiview camera system. Also it can be rectify lens and camera distortion, error of bright and color, and it can be calibrate distortion of geometry. In this paper, we proposed the signal processing skill to calibrate the camera distortions which are able to take place from the acquisited multiview images. The discordance of the brightness and the colors are calibrated the color transform by extracting the feature point, correspondence point. And the difference of brightness is calibrated by using the differential map of brightness from each camera image. A spherical lens distortion is corrected by extracting the pattern of the multiview camera images. Finally the camera error and size among the multiview cameras is calibrated by removing the distortion. Accordingly, this proposed rectification & calibration system enable to effective 3D display and acquire natural multiview 3D image.

3-Dimensional Verification Technique for Target Point Error (자기공명영상기반 겔 선량측정법을 이용한 3차원적 목표 중심점 점검기술)

  • Lee, Kyung-Nam;Lee, Dong-Joon;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2011
  • For overall system test, hidden-target test have been used using film which leads to inherent analysis error. The purpose of our study is to quantify this error and to propose gel dosimeter based verification technique for 3-dimensional target point error. The phantom was made for simulation of human head and this has ability to equip 10 gel-dosimeter. $BANGkit^{TM}$ which we are able to manufacture whenever it is needed as well as to easily change the container with different shapes was used as a gel dosimeter. The 10 targets were divided into two groups based on shapes of areas with a planned 50% isodose line. All treatment and analysis was performed three times using Novalis and $BrainSCAN^{TM}$. The target point error is $0.77{\pm}0.15mm$ for 10 targets and directional target point error in each direction is $0.54{\pm}0.23mm$, $0.37{\pm}0.08mm$, $0.33{\pm}0.10mm$ in AP (anterior-posterior), LAT (lateral), and VERT (vertical) direction, respectively. The result of less than 1 mm shows that the treatment was performed through each precise step in treatment procedure. In conclusion, the 3-dimensional target point verification technique can be one of the techniques for overall system test.