• Title/Summary/Keyword: 3차원 얼굴 인식

Search Result 101, Processing Time 0.024 seconds

Facial Feature Localization from 3D Face Image using Adjacent Depth Differences (인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2004
  • This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.

Facial expression recognition based on pleasure and arousal dimensions (쾌 및 각성차원 기반 얼굴 표정인식)

  • 신영숙;최광남
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents a new system for facial expression recognition based in dimension model of internal states. The information of facial expression are extracted to the three steps. In the first step, Gabor wavelet representation extracts the edges of face components. In the second step, sparse features of facial expressions are extracted using fuzzy C-means(FCM) clustering algorithm on neutral faces, and in the third step, are extracted using the Dynamic Model(DM) on the expression images. Finally, we show the recognition of facial expression based on the dimension model of internal states using a multi-layer perceptron. The two dimensional structure of emotion shows that it is possible to recognize not only facial expressions related to basic emotions but also expressions of various emotion.

  • PDF

A variation of face recognition rate according to the reduction of low dimension in PCA method (PCA 저차원 축소에 따른 조명 있는 얼굴의 인식률 변화)

  • Song, Young-Jun;Kim, Dong-Woo;Kim, Young-Gil;Kim, Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.533-535
    • /
    • 2006
  • In this paper, we experiment a face recognition rate of the shaded faces except to low dimension feature vectors; first, second, third dimension. It is known to robust the face recognition against illumination. But, it isn't obvious what is effect to recognition in terms of low dimension. We are analysis to the effect of low dimension(first, second, third dimension, and combination of these) under the shaded faces.

  • PDF

Efficiency Improvement on Face Recognition using Gabor Tensor (가버 텐서를 이용한 얼굴인식 성능 개선)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.748-755
    • /
    • 2010
  • In this paper we propose an improved face recognition method using Gabor tensor. Gabor transform is known to be able to represent characteristic feature in face and reduced environmental influence. It may contribute to improve face recognition ratio. We attempted to combine three-dimensional tensor from Gabor transform with MPCA(Multilinear PCA) and LDA. MPCA with tensor which use various features is more effective than traditional one or two dimensional PCA. It is known to be robust to the change of face expression or light. Proposed method is simulated by MATALB9 using ORL and Yale face database. Test result shows that recognition ratio is improved maximum 9~27% compared with exisisting face recognition method.

3D Face Recognition using Longitudinal Section and Transection (종단면과 횡단면을 이용한 3차원 얼굴 인식)

  • 이영학;박건우;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.885-893
    • /
    • 2003
  • In this paper, a new practical implementation of a person verification system using features of longitudinal section and transection and other facial, rotation compensated 3D face image, is proposed. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face image, one has to take into consideration the orientated frontal posture to normalize. Next, the special points in regions, such as nose, eyes and mouth are detected. The depth of nose, the area of nose and the volume of nose based both on the 3 longitudinal section and a transection are calculated. The eye interval and mouth width are also computed. Finally, the 12 features on the face were extracted. The Ll measure for comparing two feature vectors were used, because it is simple and robust. In the experimental results, proposed method achieves recognition rate of 95.5% for the longitudinal section and transection.

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF

An Affective 3D Facial Makeup Simulation Using a Multi-sensory Interaction (다중 감각 인터랙션을 이용한 감성적 3차원 얼굴 메이크업 시뮬레이션)

  • Kim, Jeong-Sik;Kim, Hyeon-Joong;Choi, Soo-Mi
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.500-506
    • /
    • 2007
  • 얼굴에 대한 시각적 인지는 오랫동안 인간에게 중요한 문제로 인식되어 왔다. 수 세기 동안 이루어져 왔던 미용 화장과 성형, 치아 교정 등의 다양한 연구는 사람의 얼굴을 감성적 측면에서 어떻게 하면 아름답게 만들 수 있는 가에 초점을 두었다. 본 논문에서는 휴먼 입출력 인터페이스로서 햅틱 장치와 스테레오 디스플레이를 혼합한 다중 감각 인터랙션 기반의 감성적인 3차원 얼굴 메이크업 시뮬레이션 프레임워크를 개발한다. 본 연구는 3차원 스캐너 장비로부터 사용자의 얼굴 모델을 추출하고, 그 데이터를 이용하여 자연스럽고 직관적인 얼굴 메이크업 시뮬레이션을 수행하는 것을 목표로 하고 있다. 이를 위하여 본 연구에서는 surface elements 표현 기반의 3차원 얼굴 필터링 방법과 얼굴 메이크업을 지원하는 페인팅 방법을 개발한다. 우선 사용자의 얼굴 모델을 3차원 스캐너로 획득한 후, 전처리 얼굴 필터링을 수행하여 조명, 그리고 사용자 얼굴 피부 상태에 기인하는 에러 및 속성들을 보정하고 피부 톤을 사용자가 선호하는 색으로 변경한다. 최종적으로 사용자는 햅틱 및 스테레오 디스플레이 장치를 이용하여 두 개의 레이어로 구성된 페인팅 표면 모델에 메이크업을 수행한다. 본 연구에서 적용한 surface elements 표현 기반의 그래픽 렌더링은 일반적인 메쉬 기반 페인팅의 문제점인 텍스쳐 왜곡 현상을 완화하고, 3차원 스캐너 장치에 기인하는 표면 에러를 보정한다. 그리고 전처리 얼굴 필터링과 메이크업 페인팅 방법은 사용자 중심의 감성적인 3차원 얼굴을 재구성하도록 한다. 결과적으로 본 연구에서 개발한 이러한 기술들이 다중 감각 인터페이스 기반의 메이크업 시뮬레이터의 기본 프레임워크가 되어, 차후 메이크업이나 코디네이션 분야 등의 디지털 콘텐츠 산업에서 활용될 수 있음을 확인하였다.

  • PDF

3D Face Recognition using Cumulative Histogram of Surface Curvature (표면곡률의 누적히스토그램을 이용한 3차원 얼굴인식)

  • 이영학;배기억;이태흥
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.605-616
    • /
    • 2004
  • A new practical implementation of a facial verification system using cumulative histogram of surface curvatures for the local and contour line areas is proposed, in this paper. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face images, one has to take into consideration the orientated frontal posture to normalize after extracting face area from the original image. The feature vectors are extracted by using the cumulative histogram which is calculated from the curvature of surface for the contour line areas: 20, 30 and 40, and nose, mouth and eyes regions, which has depth and surface characteristic information. The L1 measure for comparing two feature vectors were used, because it was simple and robust. In the experimental results, the maximum curvature achieved recognition rate of 96% among the proposed methods.

Pose Estimation of Face Using 3D Model and Optical Flow in Real Time (3D 모델과 Optical flow를 이용한 실시간 얼굴 모션 추정)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.780-785
    • /
    • 2006
  • HCI, 비전 기반 사용자 인터페이스 또는 제스쳐 인식과 같은 많은 분야에서 3 차원 얼굴 모션을 추정하는 것은 중요한 작업이다. 연속된 2 차원 이미지로부터 3 차원 모션을 추정하기 위한 방법으로는 크게 외형 기반 방법이나 모델을 이용하는 방법이 있다. 본 연구에서는 동영상으로부터 3 차원 실린더 모델과 Optical flow를 이용하여 실시간으로 얼굴 모션을 추정하는 방법을 제안하고자 한다. 초기 프레임으로부터 얼굴의 피부색과 템플릿 매칭을 이용하여 얼굴 영역을 검출하고 검출된 얼굴 영역에 3 차원 실린더 모델을 투영하게 된다. 연속된 프레임으로 부터 Lucas-Kanade 의 Optical flow 를 이용하여 얼굴 모션을 추정한다. 정확한 얼굴 모션 추정을 하기 위해 IRLS 방법을 이용하여 각 픽셀에 대한 가중치를 설정하게 된다. 또한, 동적 템플릿을 이용해 오랫동안 정확한 얼굴 모션 추정하는 방법을 제안한다.

  • PDF

Wavelet based Fuzzy Integral System for 3D Face Recognition (퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.616-626
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.