Abstract
The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있으며, 얼굴 영상으로부터 분리한 주파수 성분은 동일한 얼굴에 대하여 또 다른 중요한 하나의 얼굴 특징으로 볼 수 있다. 본 논문은 3차원 얼굴 영상으로부터 등고선 값에 의해 추출된 영역에 대하여 각 영역별로 주파수 분리를 하여 특징을 추출한 후 이 주파수에 대한 퍼지적분을 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형판별분석 알고리즘을 이용하여 유사도를 비교하였다. 클래스간의 분별 정보를 등고선 영역과 각 영역의 주파수 영역에 대해 퍼지적분 방법을 사용하여 인식률을 향상 시켰으며, 깊이 혼합 방식의 경우는 98.6%의 인식률을 나타내었다. 제안된 방법이 다른 알고리즘보다 인식률이 향상되었다.