• Title/Summary/Keyword: 3차원 물체인식

Search Result 172, Processing Time 0.027 seconds

Shape Recognition of 3-D Object Using Texels (텍셀을 이용한 3차원 물체의 형상 인식)

  • Kim, Do-Nyun;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.460-464
    • /
    • 1990
  • Texture provides an important source of information about the local orientation of visible surfaces. An important task that arises in many computer vision systems is the reconstruction of three-dimensional depth information from two-dimensional images. The surface orientation of texel is classified by the Artificial Neural Network. The classification method to recognize the shape of 3D object with artificial neural network requires less developing time comparing to conventional method. The segmentation problem is assumed to be solved. The surface in view is smooth and is covered with repeated texture elements. In this study, 3D shape reconstruct using interpolation method.

  • PDF

A Study on Building 3-D Object Recognition System Using the Orientation Information (방향정보를 이용한 3차원 물체 인식시스템의 구축에 관한 연구)

  • 박종훈;이상훈;최연성;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.757-766
    • /
    • 1990
  • In this paper a new knowledge based vision system using orientation information on each surface of the 3-dimensional object is discussed. The measurement of the orientation information is performed by photometric stereo method. And then the obtained orientations are segmented using Gaussian curvature and mean curvature. A hierarchical knowledge base which is based on the characteristics, shape, area and length of the surface is built up, and then the knowledge based system infers by the condition interprete system (CIS). As the results, an easier and more accurate 3-D object recognition system is implemented, because it uses the characteristics and shapes as units of the surface in the recognition process.

  • PDF

Object Recognition using 3D Depth Measurement System. (3차원 거리 측정 장치를 이용한 물체 인식)

  • Gim, Seong-Chan;Ko, Su-Hong;Kim, Hyong-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF

3-D Object Recognition Using Surface Normal Images (면 법선 영상을 이용한 3차원 물체 인식)

  • 박종훈;장태규;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.9
    • /
    • pp.727-738
    • /
    • 1991
  • This paper presents a new approach to explicityly use surface normal images (SNIs) in 3-D object model description and recognition procedure. The surface normal images of an object are defined as the projected images obtained from view angles facing normal to each surface of the object. The proposed approach can significantly alleviate the difficulty of obtaining correspondence between models and scene objects by explicitly providing a transform for the matching. The proposed approach is applied to the construction of a model-based 3-D object recognition system for the selected five objects. Synthetic images are used in the experiment to show the operation of the overall recognition system.

  • PDF

Generalized Hough Transform using Internal Gradient Information (내부 그레디언트 정보를 이용한 일반화된 허프변환)

  • Chang, Ji Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.73-81
    • /
    • 2017
  • The generalized Hough transform (GHough) is a useful technique for detecting and locating 2-D model. However, GHough requires a 4-D parameter array and a large amount of time to detect objects of unknown scale and orientation because it enumerates all possible parameter values into a 4-D parameter space. Several n-to-1 mapping algorithms were proposed to reduce the parameter space from 4-D to 2-D. However, these algorithms are very likely to fail due to the random votes cast into the 2-D parameter space. This paper proposes to use internal gradient information in addition to the model boundary points to reduce the number of random votes cast into 2-D parameter space. Experimental result shows that our proposed method can reduce both the number of random votes cast into the parameter space and the execution time effectively.

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

User Preference and Workload Changes According to Information Visualization Methods (정보표현방식에 따른 사용자 호의도 및 업무부하량 변화)

  • Chung Kyung Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • Despite the wide range of information and engineering visualization techniques available, studies in investigating the effectiveness of the techniques in visualization has been rare. The typical visualization techniques were CAD, 2D and 3D computer graphics, and virtual environment (VE) that use 3D displays of 3D. space. The objects of this study is to analyze the user preferences and workload changes according to the visualization methods of engineering drawings such as 2D CAD, 2D computer graphics, 3D computer graphics, and augmented reality which is a variation of VEs. The results showed that users preferred 3D visualization techniques to 2D visualization techniques, though there were no workloads differences. Furthermore, the 3D perspective of AR which analogies the real world could facilitate the interpretation of engineering drawings.

AR-based Message Annotation System for Personalized Assistance (개인화된 도움을 위한 증강현실기반 메시지 주석시스템)

  • Vinh, Nguyen Van;Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.435-442
    • /
    • 2009
  • We propose an annotation system, which allows users moving on an environment to receive personalized messages that are generated by exploiting contextual information. In the system, the context is defined as an entity including user's identity, location and time. Identity of user is a key data to enable personal aspect of generated message. For sensing the context, the proposed system uses AR(augmented reality) technology. Markers are attached to real objects for tracking user's location. AR can provide an effective annotating method to enhance human's perception and interaction abilities. The received message can be a virtual post-it or three-dimensional virtual model of object overlaid onto the real-world view. Experimental results show that the proposed system works well in real-time with high performance and it can be used as a mobile service for personalized messaging.

Robust Recognition of 3D Object Using Attributed Relation Graph of Silhouette's (실루엣 기반의 관계그래프 이용한 강인한 3차원 물체 인식)

  • Kim, Dae-Woong;Baek, Kyung-Hwan;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.103-110
    • /
    • 2008
  • This paper presents a new approach of recognizing a 3D object using a single camera, based on the extended convex hull of its silhouette. It aims at minimizing the DB size and simplifying the processes for matching and feature extraction. For this purpose, two concepts are introduced: extended convex hull and measurable region. Extended convex hull consists of convex curved edges as well as convex polygons. Measurable region is the cluster of the viewing vectors of a camera represented as the points on the orientation sphere from which a specific set of surfaces can be measured. A measurable region is represented by the extended convex hull of the silhouette which can be obtained by viewing the object from the center of the measurable region. Each silhouette is represented by a relation graph where a node describes an edge using its type, length, reality, and components. Experimental results are included to show that the proposed algorithm works efficiently even when the objects are overlapped and partially occluded. The time complexity for searching the object model in the database is O(N) where N is the number of silhouette models.

3-D Recognition of Position using Epipolar Line and Matching from Stereo Image (두개의 영상으로부터 Epipolar Line과 Matching을 이용한 3차원 물체의 위치 인식)

  • Cho, Seok-Je;Park, Kil-Houm;Lee, Kwang-Ho;Kim, Young-Mo;Ha, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1441-1444
    • /
    • 1987
  • Extraction of dept.h information from stereo image uses the matching process between them and this requires a lot of computational time. In this paper, a matching using the feature points on the epipolar line is presented to save the computations. Feature points are obtained in both image and correlated each other. With the coordinates of the matched feature points and camera geometry, the position and depth informations are identified.

  • PDF