• Title/Summary/Keyword: 3차원스캐너

Search Result 306, Processing Time 0.019 seconds

Development of Computerized Anthropometric Analysis Model in Cleft Lip Nasal Deformity Using 3D Laser Scanned Facial Cast Model (구순구개열의 비구순변형에서 3차원 입체 laser 스캐너를 이용한 계측분석 프로그램의 개발)

  • Kim, Suk Wha;Park, Jong Lim;Kim, Jae Chan;Baek, Seung Hak;Son, Woo Gil
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • Purpose: The purpose of this study is to develop three-dimensional computerized anthropometry(3DCA) and to compare its reliability and accuracy 3DCA with manual anthropometry(MA) for measurement of lips and nasal deformities in unilateral cleft lips and palate(UCLP) patients. Methods: Samples were consisted of six UCLP patients whose facial plaster models were available immediately before and 3 months after the cleft lip surgery. MA of the facial plaster models was carried out using an electronic caliper. In 3DCA, three-dimensional auto-measuring program was used to digitize landmarks and to measure three-dimensional virtual facial models (3DVFM), which was generated with a laser scanner and 3D virtual modeling program. Intraclass correlation coefficients(ICC) were calculated to evaluate reliability and reproducibility of the variables in both methods, and Wilcoxon's signed rank test was done to investigate the difference in values of the same variables of facial models of each patient between two methods. Results: All ICC values were higher than 0.8, so both methods could be considered reliable. Although most variables showed statistical differences between two methods(p<0.05), differences between mean values were very small and could be considered not significant in clinical situation. Conclusion: In clinical situation, 3DCA can be an objective, reliable and accurate tool for evaluation of lips and nasal deformities in the cleft patients.

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

A Study on the Development of Ultrasonography Guide using Motion Tracking System (이미지 가이드 시스템 기반 초음파 검사 교육 기법 개발: 예비 연구)

  • Jung Young-Jin;Kim Eun-Hye;Choi Hye-Rin;Lee Chae-Jeong;Kim Seo-Hyeon;Choi Yu-Jin;Hong Dong-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1067-1073
    • /
    • 2023
  • Breast cancer is one of the top three most common cancers in modern women, and the incidence rate is increasing rapidly. Breast cancer has a high family history and a mortality rate of about 15%, making it a high-risk group. Therefore, breast cancer needs constant management after an early examination. Among the various equipment that can diagnose cancer, ultrasound has the advantage of low risk and being able to diagnose in real time. In addition, breast ultrasound will be more useful because Asian women's breasts are denser and less sensitive. However, the results of ultrasound examinations vary greatly depending on the technology of the examiner. To compensate for this, we intend to incorporate motion tracking technology. Motion tracking is a technology that specifies and analyzes a location according to the movement of an object in a three-dimensional space. Therefore, real-time control is possible, and complex and fast movements can be recorded in real time. We would like to present the production of an ultrasound examination guide using these advantages.

Classification of Elderly Men's Foot Side Type from 3D Scan Data (3차원 스캔 데이터에 의한 노년 남성의 발 측면유형 분류)

  • Kim, Nam-Soon;Do, Wol-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.4
    • /
    • pp.427-439
    • /
    • 2014
  • This study identifies the foot side shapes of elderly men by classifying foot types according to 3D foot shapes and analyzing individual characteristics. The subjects were 284 elderly men over 60 years of age who lived in Gwangju and did not have foot related diseases. They were measured with a scanner (Nexcan$^{(R)}$ of K&I Technology) to obtain three dimensional feet shapes. Anthropometric measuring items consisted of 28 items estimated on the right foot of each subject. 3D scan data were analyzed by various statistical methods such as factor analysis, ANOVA and cluster analysis using the statistical program SPSS 19.0. A total of 7 factors were extracted through a factor analysis and these factors represent 77.56% of total variance. The 8 factors were: inside height and side gradient, ankle thickness, size from foot center to ankle, lateral malleolus height, forefoot height, instep and heel height and gradient. A total of 3 clusters (as foot type) were categorized using 7 factor scores by cluster analysis. Type 1 was classified as high forefoot and low midfoot compared to the length. Type 2 was classified as low forefoot and high midfoot, and type 3 was classified as low forefoot and low midfoot.

The Study on the Foot Type of Female Farmers (여성 농업인 발 유형에 관한 연구)

  • Jung, Myoung-Sook;Hwang, Kyoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.62 no.1
    • /
    • pp.76-89
    • /
    • 2012
  • This study was performed to offer the basic data for the design of farm shoes. 265 Korean female farmers aging between the 40s to the 80s volunteered for this study and we measured 40 items on each foot with the 3D foot scanner. First, the differences between farmers' feet and non-farmers' feet were analyzed. Farmers' feet were thicker in the instep areas, but had lower arch height than non-farmers' feet. In addition, farmer's feet were tilted to the inside. Next, eight factors were extracted among the 40 measuring items, and the classification criteria of the foot shape was analyzed. The important factors were: size of foot length and volume of ankle, malleolus height and size, volume of the front part of ankle, medial & lateral ball width, and vertical size of foot. Third, three clusters according to the foot shapes were categorized by cluster analysis of eight factor scores. Foot type 1 was medium in foot length, big in thickness, large in lateral ball width, small in toe 1 angle, and tilted to the inside. Foot type 2 was long and slim, and big in toe 5 angle. Foot type 3 was short in foot length, medium in volume of the front part of ankle, large in medial ball width, and big in toe 1 angle. Despite its shortness, foot type 3 was thick and showed severe deformation in toe 1. Lastly, the frequency distributions of the foot types in each age group were analyzed. Female farmers of the forties showed high frequency in type 1 and other age groups showed high frequency in type 2. The older female farmers showed higher frequency of type 3.

Three-dimensional evaluation on the repeatability and reproducibility of dental scanner-based digital models (치과용 스캐너로 채득한 디지털 모형의 반복성 및 재현성에 관한 3차원적 평가)

  • Lee, Gyeong-Tak;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.34 no.3
    • /
    • pp.213-220
    • /
    • 2012
  • Purpose: The aim of this study was to determine the repeatability and reproducibility of two dental scanners. Methods: The master die and the stone replicas(Kavo, Germany) were digitized in touch-probe scanner(Incise, Renishaw, UK), white light scanner(Identica, Medit, Korea) to create 3-dimensional surface-models. The number of points in the point clouds from each reading were calculated and used as the CAD reference model(CRM). Discrepancies between the points in the 3-dimensional surface models and the corresponding CRM were measured by a matching-software(Power-Inspect R2, Delcam Plc, UK). The t-student test for one samples were used for statistical analysis. Results: The reproducibility of both scanner was within $3{\mu}m$, based on mean value. The mean value between measurements made directly on the touch probe scanner digital models and those made on the white light scanner digital models was $2.20-2.90{\mu}m$, and was statistically significant(P<0.05). Conclusion: With respect to adequate data acquisition, the reproducibility of dental scanner differs. Three-dimensional analysis can be applied to differential quality analysis of the manufacturing process as well as to evaluation of different analysis methods.

Accuracy and Precision of Three-dimensional Imaging System of Children's Facial Soft Tissue (소아 얼굴 연조직의 3차원 입체영상의 정확성 및 재현성 평가)

  • Choi, Kyunghwa;Kim, Misun;Lee, Koeun;Nam, Okhyung;Lee, Hyo-seol;Choi, Sungchul;Kim, Kwangchul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The purpose of this study was to evaluate the accuracy and precision of the three-dimensional (3D) imaging system of children's facial soft tissue by comparing linear measurements. The subjects of the study were 15 children between the ages of 7 and 12. Twenty-three landmarks were pointed on the face of each subject and 16 linear measurements were directly obtained 2 times using an electronic caliper. Two sets of 3D facial images were made by the 3D scanner. The same 16 measurements were obtained on each 3D image. In the accuracy test, the total average difference was 0.9 mm. The precision of 3D photogrammetry was almost equivalent to that of direct measurement. Thus, 3D photogrammetry by the 3D scanner in children had sufficient accuracy and precision to be used in clinical setting. However, the 3D imaging system requires the subject's compliance for exact images. If the clinicians provide specific instructions to children while obtaining 3D images, the 3D device is useful for investigating children's facial growth and development. Also the device can be a valuable tool for evaluating the results of orthodontic and orthopedic treatments.

A comparison of canal centering abilities of four root canal instrument systems using X-ray micro-computed tomography (방사선 미세컴퓨터단층촬영을 이용한 네 종류 file systems의 중심유지능에 관한 비교)

  • Ko, Hye-Suk;You, Heyon-Mee;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study was to compare the centering abilities of four root canal instrument systems and the amounts of dentin removed after root canal shaping using them. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}$ curvature were scanned using X-ray micro-computed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n = 10 per group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with Profile (Group 2), ProTaper (Group 3) or K3 system (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Scanned images were processed to reconstruct three-dimensional images using three-dimensional image software and the changes of total canal volume were measured. Pre-and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were com pared. For each level, centering ratio were calculated using Adobe Photoshop 6.0 and image software program. ProTaper and K3 systems have a tendency to remove more dentin than the other file systems. In all groups, the lowest value of centering ratio at 3 mm level was observed. And except at 3 mm level, ProTaper system made canals less centered than the other systems (p < 0.05).

Analysis of Erosion and Deposition by Debris-flow with LiDAR (지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정)

  • Jun, Byong-Hee;Jang, Chang-Deok;Kim, Nam-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.

Analysis The Intensity of Weathering of The Rock Surface Using 3D Terrestrial Laser Scanner and Thermal Infrared Instrument (열적외선 기기와 3차원 레이저 스캐너를 이용한 암석 표면의 풍화강도 분석)

  • Lee, Soo-Gon;Cho, Hang-Kyo;Xu, Jing
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1324-1333
    • /
    • 2010
  • This paper is used in a recent civil engineering field in three-dimensional laser-meter tiles using thermal imaging cameras for the weathered rock slopes precisely measured indirectly, to the degree that began in the will. In the field is difficult to access the degree of weathering of the rock slope to the existing direct way to compensate for the shortcomings of 3D Terrestrial Laser Scanner and weathering characteristics of rocks using thermal imaging cameras to get the information to analyze the degree of rock weathering is. Intensity of 3D TLS and the thermal camera with image analysis to analyze the degree of weathering of bedrock in the field of core drilling targeting indoor laboratory tests were analyzed through the study. Granite, gneiss, sandstone, much of the cancerous samples, each experiment has a 40 per category, each of which 30 were used to analyze the data collected. That degree of rock weathering, the rock, depending on the strength of the Intensity values can change, depending on the level of thermal imaging camera, also weathered the changes in temperature could see. Intensity is the strength of weak rocks, the more value decrease, the temperature of the thermal imaging camera through the swell Intensity and notice that the temperature had an inverse relationship. Intensity value of the low strength of weak rock, but the value came out of the rocks have been proved to be largely dependent on the contrast. The contrast of the surface rocks are weathered dark Intensity values lower temperature to swell the contrary, the degree of weathering can be distinguished.

  • PDF