• Title/Summary/Keyword: 3점 굽힘

Search Result 165, Processing Time 0.019 seconds

Effect of titanium powder on the bond strength of metal heat treatment (티타늄 파우더가 금속의 열처리 시 결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.71-79
    • /
    • 2017
  • Purpose: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. Materials and Methods: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). Results: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: $39.22{\pm}3.41MPa$ and $6.66{\mu}m$, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: $34.65{\pm}1.39MPa$ and $13.22{\mu}m$. Experiment T1 using no Titanium chemical catalyst: $32.37{\pm}1.91MPa$ and $22.22{\mu}m$. Conclusion: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

PROPERTIES OF LIGHT-CURED COMPOSITE RESINS CONTAINING $SrF_2$, GLASS FILLER ($SrF_2$계 충진재를 함유한 광중합형 복합레진의 특성)

  • Kim, Hee-Jung;Kim, Kyung-Nam;Choi, Byung-Jai;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.54-66
    • /
    • 2001
  • The aim of this study was to investigate the fluoride release and some mechanical properties including 3-point bending strength, amount of abrasion, surface hardness, water sorption/solubility and cytotoxicity of the newly developed composite resins containing 8, 16, 24 wt% $SrF_2$ glass filler (VF8, VF16, VF24) and four commercially available composite resins, Heliomolar(HE), Verdonfil(VE), Z100(ZH) and Aelitefil(AE). To investigate cytotoxic effect, agar overlay assay was done. Amount of fluoride released into distilled water was measured over a 62-days period from VF8, VF16, VF24 and HE. Results were as follows: 1. Experimental composite resins showed similar mechanical properties to commercial composite resins, but 3-point bending strength and surface hardness of experimental composite resins were inferior to ZH. 2. Over a 62-day Period, the amount of fluoride released was ordered: VF24>VF16>VF8>HE. In experimental composite resins, the amount of fluoride released was 9-23 times greater than HE and seemed to be proportional to the content of $SrF_2$ glass filler. 3. Experimental composite resins and all control composite resins showed mild cytotoxicity. This study showed significantly greater fluoride release from newly developed composite resins than control(HE) and addition of $SrF_2$ glass filler did not decrease mechanical properties or increase cytotoxicity of composite resin. The results from this study imply that newly developed composite resin have adequate mechanical properites, mild cytotoxicity and some potential for secondary caries prevention.

  • PDF

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Comparison of the Mechanical Properties between Bulk-fill and Conventional Composites (Bulk-fill 복합레진과 전통적 복합레진의 물성비교)

  • Noh, Taehwan;Song, Eunju;Park, Soyoung;Pyo, Aeri;Kwon, Yonghoon;Kim, Jiyeon;Kim, Shin;Jeong, Taesung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.4
    • /
    • pp.365-373
    • /
    • 2016
  • Composites are the most useful restorative material. However, composites have some disadvantages such as polymerization shrinkage, long working time, and susceptibility to water and contamination, which are stood out more especially when treating children. To solve these problems, bulk-fill composites have been developed. The aim of this study is to compare mechanical properties of bulk-fill and conventional composites. Bulk-fill composites (SureFil SDR flow (SDR), Tetric N-Ceram bulk fill (TBF)) and conventional composites (Filtek Z-350 (Z-350), Unifil Flow (UF), Unifil Loflo Plus (UL)) were used. The Vickers hardness tester was used to measure the microhardness of materials, and Fourier transform infrared spectroscopy was used to measure the degree of conversion. Polymerization shrinkage was measured by using a linometer. Flexural and compressive properties were measured by using the universal testing machine. Data were statistically analyzed by ANOVA and Scheffe's post hoc test. The level of significance was set to p < 0.05. Most conventional composites showed higher microhardness than bulk-fill composites. However, bulk-fill composites showed a higher top/bottom microhardness ratio than conventional composites. Bulk-fill composites showed a higher top/bottom degree of conversion ratio than conventional composites. The polymerization shrinkage was highest in UL and lowest in Z-350. The polymerization shrinkage of flowable composites was higher than that of non flowable composites. The compressive properties were highest in Z-350 and lowest in SDR and UL. In terms of flexural properties, Z-350 was the highest. However, none of the bulk-fill composites exhibited mechanical properties as good as those of conventional composites. Nonetheless, the ratio of microhardness and degree of conversion, which are important properties of bulk filling, were higher in bulk-fill composites. Therefore, the bulk-fill composites might be considered suitable restorative materials in pediatric dentistry.