• Title/Summary/Keyword: 3격실모델

Search Result 10, Processing Time 0.027 seconds

격납용기내 소격실에서의 수소혼합 연구

  • 박군철;최용석;이운장
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.617-622
    • /
    • 1997
  • 격납건물내 소격실에서의 수소혼합 정도를 파악하고 격실내 균일한 혼합을 좌우하는 인자의 영향을 분석하기 위하여 소규모 혼합실험을 수행했다. 본 연구에서는 해석적으로 수립된 3차원 혼합 모델의 검증을 위하여 3차원 모사가 가능하도록 실험 장치를 구성하였다. 격납용기 내에서 수소 생성의 주원인이 되는 노심으로부터의 수소거동을 분석하기 위한 기초 실험(실험 A)과 안전주입 탱크 격실에서의 수소거동을 분석하기 위해 원형 혼합 chamber를 구상했다. 기초실험 A에서는 혼합 chamber내 축 방향으로 대칭적인 오리피스형 장애물을 설치하고 실험했고 안전주입 탱크 격실을 모사한 실험 B는 영광 3&4호기를 바탕으로 축소시켜 안전주입탱크 격실내 존재하는 두충과 안전 주입 탱크 사이의 틀을 통한 혼합체의 거동을 분석했다. 실험결과 오리피스형 장애물을 설치한 기초실험에서는 원형 띠모양의 장애물이 혼합체의 거동에 큰 영향을 주지 않는 것이 관측됐지만 안전주입탱크격실 실험에서는 격실내 장애물로 존재하는 두충이 혼합체의 거동에 큰 영향을 주는 것이 관측됐다.

  • PDF

The Effect of Obstacles in a Compartment on Personnel Injury Caused by Blast (격실 내 장애물이 폭압에 의한 인원 피해에 미치는 영향)

  • Park, Sung-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • Blast injuries in a compartment are investigated, and the effects of obstacles on blast injury are particularly analyzed by comparing injuries in the compartments with or without protruding obstacles inside. Even if blast pressure profile tends to be complicated in a confined space unlike in open field, it can be obtained in a relatively short time by using some empirical fast running models for simple confined spaces. However, a finite element method should be employed to obtain blast pressure profiles in a case with obstacles in confined spaces, because the obstacles heavily disturb blast waves. On the other hand, Axelsson SDOF(Single degree of freedom) model and ASII(Adjusted severity of injury index) injury level are employed to estimate blast injury in compartments, because the usual pressure-impulse injury criterion based on the ideal Friedlander waves in open the field cannot be applied to personnel in a confined space due to complexity of blast waves inside. In cases with obstacles, chest wall velocity was reduced by 26 to 76 percent(%) and the personnel injury in the compartment caused by blast was also reduced.

Evaluation Model and Experimental Validation of Tritium in Agricultural Plant (농작물의 삼중수소 오염평가 모델 개발 및 실험검증)

  • Kang Hee Suk;Keum Dong-kwon;Lee Hansoo;In Jun;Choi Yong Ho;Lee Chang Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.319-328
    • /
    • 2005
  • This paper describes a compartment dynamic model for evaluating the contamination level of kritium in agricultural plants exposed by accidentally released tritium. The present model uses a time-dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium(OBT) were measured. The measured concentrations were agreed well with model predictions.

  • PDF

Assessment of Thyroid Dose Evaluation Method by Monitoring of I-131 Concentration in Air (공기중 I-131 농도 감시에 의한 갑상선 피폭 평가법의 적용성)

  • Lee, Jong-Il;Seo, Kyung-Won
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1994
  • The TCMI(Three-Compartment Model for iodine) computer code has been developed, which is based on the three-compartment model and the respiratory model recommended in ICRP publication 54. This code is able to evaluate the thyroid burden, dose equivalent, committed dose equivalent and urinary excretion rate as time-dependent functions from the input data: working time and the radioiodine concentration in air. Using the TCMI code, the time-dependent thyroid burdens, the thyroid doses and the urinary excretion rates were calculated for three specific exposure patterns : acute, chronic and periodic. Applicability as an internal dose evaluation method has been assessed by comparing the results with some operational experiences. Simple equations and tables are provided to be used in the evaluation of the thyroid burden and the resulting doses for given I-131 concentration in air and the working time.

  • PDF

Model for assessing the contamination of agricultural plants by accidentally released tritium (삼중수소 사고유출로 인한 농작물 오염 평가 모델)

  • Keum, Dong-Kwon;Lee, Han-Soo;Kang, Hee-Suk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • A dynamic compartment model was developed to appraise the level of the contamination of agricultural plants by accidentally released tritium from nuclear facility. The model consists of a set of inter-connected compartments representing atmosphere, soil and plant. In the model three categories of plant are considered: leafy vegetables, grain plants and tuber plants, of which each is modeled separately to account for the different transport pathways of tritium. The predictive accuracy of the model was tested through the analysis of the tritium exposure experiments for rice-plants. The predicted TFWT(tissue free water tritium) concentration of the rice ear at harvest was greatly affected by the absolute humidity of air, the ratio of root uptake, and the rate of rainfall, while its OBT(organically bound tritium) concentration the stowing period of the ear, the absolute humidity of air and the content of hydrogen in the organic phase. There was a good agreement between the model prediction and the experimental results lot the OBT concentration of the ear.

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

A Study on Application Analysis Using RETRAN Computer Code for the Environmental Qualification Flood Analysis Following the Main Feed Water Line Break (주급수관 파단에 따른 내환경검증 침수분석용 전산코드 RETRAN의 적용 해석연구)

  • Park, Young-Chan;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.103-112
    • /
    • 2007
  • Flood issue for nuclear power plants designed and built in 1970 is extremely severe for main steam header compartment and main feedwater line region of intermediate building and lower floor. A calculation for flood level at the main feedwater line isolation compartment is now performing by hand calculation. But, this methodology is quite conservative assumption. The goal of this study was to develop method to analyze flowrate using the RETRAN-3D computer code, and the developed method was applied to flood level analysis following main feedwater line break. As a result of analysis, flood level was low remarkably.

A Study on the Reduction of the Vibration in PKM Using a Propeller Damper (프로펠러 감쇄기를 이용한 고속정 진동 감소방안 연구)

  • Kim, Hye-Jin;Lee, Heun-Hwa;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.103-110
    • /
    • 2008
  • Strategically, the Patrol Killer Medium (PKM) ought to run at high speed that produces largely vibration by propeller, in a consequence, the vibration gradually deterioratescrews' working condition and increases the possibility of SONAR detection. In this paper, we propose the propeller damper, which is one of waysto reduce the vibration induced by the propeller, and simulate the ability of the damper numerically. The propeller damper was designed to apply to an isolated plate at the bottom flat board of ship which is directly affected by the fluctuating pressure. The dynamic pressure for the stern part of the PKM is calculated by using the DnV rule and the numerical analysis when the propeller damper applied or not, is performed with ANSYS at the isolated plate that simplified. From the analysis, the damping effect of the proposed propeller damper is confirmed and the reduction ratio for each compartment is estimated based on the experimental data in the PKM.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.