• Title/Summary/Keyword: 3^{pulsed}$

Search Result 1,290, Processing Time 0.025 seconds

Dielectric and Magnetic Properties of Niobium and Cobalt Co-substituted Multiferroic BiFeO3 Thin Films (Niobium과 Cobalt를 첨가한 Multiferroic BiFeO3 박막의 유전 특성 및 자성 특성)

  • Jun, Youn-Ki;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.556-560
    • /
    • 2008
  • The effects of Nb and Co ion substitution on the dielectric and magnetic properties of the multiferroic $BiFeO_3$ thin films have been investigated. Heteroepitaxial $BiFeO_3$ thin films were deposited by Pulsed Laser Deposition method. Nb substitution decreased the leakage current by 6 orders of magnitude and Co substituted $BiFeO_3$ thin films showed an enhanced magnetization, 2 times larger than that of un-substituted $BiFeO_3$. Through the co-substitution of Co and Nb, $BiFeO_3$ thin films with a low leakage current and an enhanced magnetization could be obtained.

Luminescence Characteristics of Y2-xGdxO3:Eu3+ Thin film Grown by Pulsed Laser Ablation (PLD 방법으로 Si(100) 기판위에 증착한 Y2-xGdxO3:Eu3+/ 박막의 형광특성)

  • 이성수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-117
    • /
    • 2004
  • $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$(x=0.0, 0.3, 0.6, 1.0, 1.4) luminescent thin films have been grown on Si (100) substrates using pulsed laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, the surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$ films grown under optimized conditions have indicated that Si (100) is one of promised substrates for the growth of high quality $Y_2$$_{-x}$G $d_{x}$ $O_3$:E $u^{3+}$ thin film red phosphor. In particular, the incorporation of Gd into $Y_2$ $O_3$ lattice could induce a remarkable increase of PL. The highest emission intensity was observed with $Y_{1.35}$G $d_{0.60}$ $O_3$: $E^{3+}$, whose brightness was increased by a factor of 1.95 in comparison with that of $Y_2$ $O_3$:E $u^{3+}$ films.3+/ films.films.lms.

Effects of sodium dodecyl sulfate surfactant on up-conversion luminescence of Er3+/Yb3+-codoped NaLa(MoO4)2 nanocolloidal phosphor prepared by pulsed laser ablation in water

  • Kang, SukHyun;Jung, Kyung-Hwan;Kim, Kang Min;Kim, Won Rae;Han, HyukSu;Mhin, Sungwook;Son, Yong;Shim, Kwang Bo;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.2
    • /
    • pp.158-163
    • /
    • 2019
  • Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were synthesized by pulsed laser ablations in de-ionized water and sodium dodecyl sulfate (NaC12H25SO4, SDS) aqueous solution for up-conversion (UC) luminescence bio-labeling applications. The influences of the SDS molecules on the crystallinities, crystal morphologies, crystallite sizes, and UC luminescence properties of the prepared Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals were investigated in detail. Under a 980-nm excitation, the Er3+/Yb3+-codoped nanocolloidal NaLa(MoO4)2 suspension exhibited a weak red emission near 670 nm and strong green UC emissions at 530 and 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) → Er3+ (4I15/2). When the SDS solution was used, a smaller average crystallite size, narrower size distribution, and enhanced UC luminescence were observed. These characteristics were attributed to the amphoteric SDS molecules attached to the positively charged Er3+/Yb3+-codoped NaLa(MoO4)2 colloidal nanocrystals, effectively occupying the oxygen defect on their surfaces. The Er3+/Yb3+-codoped nanocrystalline NaLa(MoO4)2 suspension prepared in the SDS solution exhibited a remarkably strong green emission visible to the naked eyes.

A Scanning Electron Microscopic Study on the Effect of Nd:YAG Laser Irradiation on the Sclerotic Dentin (Nd:YAG레이저조사가 경화상아질에 미치는 영향에 관한 주사전자현미경적 연구)

  • Kim, Moon-Hyeon;Shin, Keum-Back
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.4
    • /
    • pp.397-410
    • /
    • 1999
  • In order to obtain the basic data concerning the optimal parameters in using Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity, the author prepared 3 sections of sound dentin and 10 sections of sclerotic dentin with thickness of $0.5mm{\pm}0.1mm$ from human extracted teeth of anteriors and premolars, and applied the laser energy from a fiberoptic delivered, free running, pulsed Nd:YAG laser (wavelength 1064nm, pulse duration $120{\mu}sec$, fiber diameter $320{\mu}m$) to surfaces of sound and sclerotic dentin sections for 1 second with contact/unidirectional moving mode of the fiber under speed of 3mm~4mm/sec and parameters of 0.5W/10Hz, 1.0W/10Hz, 1.5W/10Hz, 2.0W/10Hz: $62J/cm^2$, $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. The author comparatively evaluated the characteristics of ultrastructural changes on surfaces of sound and sclerotic dentin sections irradiated by the pulsed Nd:YAG laser using the scanning electron microscopy. A fairly ill-defined bordered surface of partially closed and melted dentinal tubules can be seen on the scanning electron microscopic feature of the sound dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sound dentin surface extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. While, a fairly well-defined bordered surface of partially closed and melted dentinal tubules with thickened peritubular dentin can be seen on the scanning electron microscopic feature of the sclerotic dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sclerotic dentin surface of a fairly rough, shallow depression with many cracks, thickened peritubular dentin and structureless dentinal tubules extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$ compared to those of sound dentin surface irradiated by the pulsed Nd:YAG laser under the same parameters. Therefore, it is recommended that the pulsed Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity should be applied with the less energy density than $62J/cm^2$ on the sound dentin surface, and its energy density on the partially sclerotic dentin surface should be lower than that on the sound dentin surface to preserve tooth from unnecessary excessive structural destruction.

  • PDF

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

Papers : Feasibility Study on Attitude Control of Spacecraft Using Pulsed Plasma Thrusters (논문 : 플라즈마 펄스 추력기를 이용한 인공위성 자세제어 기법 연구)

  • Ji, Hyo-Seon;Lee, Ho-Il;Lee, Hun-Gu;Tak, Min-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.46-56
    • /
    • 2002
  • In this paper, the feasibility of the attitude control of a spacecraft using pulsed plasma thrusters(PPTs) is studied. The PPT consumes less propellant mass requied for the orbit management or attitude control owing to its high specific impulse characteristics, compared with traditional gas propulsion system. The PPT is expected to be highly adequete for the missions requiring long-duration operations because it has relatively long operation time and easy implementation. The feasibility of the PPT for attitude control of a small satellite system is addressed through realistic missions. The classical PD controller and a fuzzy logic controller are tested, and fuel saving fuzzy logic controller is then proposed for more flexible mission performance.

Anti-Hyperalgesic Effects of Meloxicam Hydrogel via Phonophoresis in Acute Inflammation in Rats; Comparing Systemic and Topical Application

  • Kim, Tae-Youl;Kim, Young-Il;Seo, Sam-Ki;Kim, Soo-Hyeun;Yang, Kyu-Ho;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • The aim of this study was to determine if a meloxicam hydrogel could be administered in vivo via phonophoretic transdermal delivery using pulsed ultrasound by examining its anti-hyperalgesic effects in a rat carrageenan inflammation model. Carrageenan (1%) was injected into the plantar surface of the right hindpaw, and meloxicam hydrogel was administered via phonophoretic transdermal delivery. Changes in the mechanical and thermal hyperalgesia, as well as swelling, showed that phonophoretic delivery of meloxicam exhibited significantly better anti-hyperalgesic and anti-inflammatory effects than pulsed ultrasound. Topical and systemic application of meloxicam hydrogel using phonophoresis showed similar anti-hyperalgesic effects. These findings suggest that the transdermal administration of a meloxicam hydrogel using phonophoresis by pulsed ultrasound might be useful for treating acute inflammation.

Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process (PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석)

  • Nam, Hyo-Eun;Jang, Jun-Ho;Park, Hyun-Kuk;Oh, Ik-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.