A Scanning Electron Microscopic Study on the Effect of Nd:YAG Laser Irradiation on the Sclerotic Dentin

Nd:YAG레이저조사가 경화상아질에 미치는 영향에 관한 주사전자현미경적 연구

  • Kim, Moon-Hyeon (Department of Oral Medicine, College of Dentistry, Chonbuk National University) ;
  • Shin, Keum-Back (Department of Oral Medicine, College of Dentistry, Chonbuk National University)
  • 김문현 (전북대학교 치과대학 구강내과학교실) ;
  • 신금백 (전북대학교 치과대학 구강내과학교실)
  • Published : 1999.12.30

Abstract

In order to obtain the basic data concerning the optimal parameters in using Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity, the author prepared 3 sections of sound dentin and 10 sections of sclerotic dentin with thickness of $0.5mm{\pm}0.1mm$ from human extracted teeth of anteriors and premolars, and applied the laser energy from a fiberoptic delivered, free running, pulsed Nd:YAG laser (wavelength 1064nm, pulse duration $120{\mu}sec$, fiber diameter $320{\mu}m$) to surfaces of sound and sclerotic dentin sections for 1 second with contact/unidirectional moving mode of the fiber under speed of 3mm~4mm/sec and parameters of 0.5W/10Hz, 1.0W/10Hz, 1.5W/10Hz, 2.0W/10Hz: $62J/cm^2$, $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. The author comparatively evaluated the characteristics of ultrastructural changes on surfaces of sound and sclerotic dentin sections irradiated by the pulsed Nd:YAG laser using the scanning electron microscopy. A fairly ill-defined bordered surface of partially closed and melted dentinal tubules can be seen on the scanning electron microscopic feature of the sound dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sound dentin surface extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. While, a fairly well-defined bordered surface of partially closed and melted dentinal tubules with thickened peritubular dentin can be seen on the scanning electron microscopic feature of the sclerotic dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sclerotic dentin surface of a fairly rough, shallow depression with many cracks, thickened peritubular dentin and structureless dentinal tubules extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$ compared to those of sound dentin surface irradiated by the pulsed Nd:YAG laser under the same parameters. Therefore, it is recommended that the pulsed Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity should be applied with the less energy density than $62J/cm^2$ on the sound dentin surface, and its energy density on the partially sclerotic dentin surface should be lower than that on the sound dentin surface to preserve tooth from unnecessary excessive structural destruction.

Keywords