• Title/Summary/Keyword: 3^{pulsed}$

검색결과 1,290건 처리시간 0.03초

돼지에서 연속형 $CO_2$ 레이저와 펄스형 $CO_2$ 레이저를 이용한 피부절개시 창상치유 평가 (Comparison of Wound Healing in Porcine Skin with Continuous-Wave and Pulsed Mode $CO_2$ Laser Incisions)

  • 이재연;조성환;박창식;김명철
    • 한국임상수의학회지
    • /
    • 제27권6호
    • /
    • pp.647-651
    • /
    • 2010
  • 연속형 $CO_2$ 레이저와 펄스형 $CO_2$ 레이저를 이용한 돼지 피부절개 시 창상 치유에 미치는 영향을 평가하고자 본 실험을 실시하였다. 다섯 마리의 돼지(Landrace x Yorkshire) (45-51 kg, 4-6 개월령, 수컷 3마리, 암컷 2마리)를 이용 하였고, 각각의 돼지에서 우측 및 좌측의 등쪽 피부에 대칭적으로 연속형 $CO_2$ 레이저와 펄스형 $CO_2$ 레이저를 이용하여 절개($2{\times}2{\times}2cm^2$) 하였다. 양측 피부 절개는 Maxon 3-0 를 이용하여 봉합하였다. 수술 후 3, 7, 14, 21일에 병리조직학적 검사를 실시하였다. 창상 부위의 재상피화는 연속형 $CO_2$ 레이저 군에 비해 펄스형 $CO_2$ 레이저군에서 더 많이 이루어졌다. 육아조직 형성은 창상후 경과일 3일에 펄스 $CO_2$ 레이저군에서 유의적으로 높게 나타났다(P < 0.05). 섬유아세포는 창상후 경과일 7일에 펄스형 $CO_2$ 레이져군에서 유의적으로 많게 형성되었다(P < 0.05). 결론적으로 피부절개 시에 있어서 펄스형 $CO_2$ 레이저는 연속형 $CO_2$ 레이저에 비하여 재상피화, 육아조직형성 및 섬유아세포가 더 높게 나타났으며, 레이저 시술에 따른 조직손상을 적게 나타내었다. 따라서 피부절개 시에 있어서 펄스형$CO_2$ 레이저가 연속형 $CO_2$ 레이저 보다 더 적합할 것으로 판단된다.

Plused Laser Depositon을 이용한 Nb doped SrTiO$_3$ 박막의 제작과 최적 조건 (Preparation of Nb doped SrTiO$_3$ Film by Pulsed Laser Deposition and Optimum Processing Conditions)

  • 안진용;;최승철
    • 한국세라믹학회지
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 1999
  • MgO 단결성 (100) 기판 위에 0.5 wt% Nb 첨가된 전기전도성의 SrTiO3 (Nb:STO) 박막을 Pulsed Laser Deposition 법으로 제조하였다. 산소압력, 타겟과 기판거리, 기판온도, 박막증착시간 등의 박막형성 조건을 다양하게 변화시켜 Nb:STO박막의 격자상수와 박막두께의 변화를 조사하였다. $700^{\circ}C$에서 제작한 0.5 wt% Nb doped SrTiO3 박막의 배향성은 산소분압변화에 따라(100), (110)과 (111)배향이 관찰되었고, 박막제조시의 산소분압이 79.8 Pa로 증가됨에 따라 격자상수는 감소하여 벌크값인 0.390 nm에 근접하였다. 증착시간증가에 따른 박막의 두께는 증착시간에 비례하여 증가하였고, 격자상수의 변화는 거의 없었다. 타겟과 기판사이의 거리가 멀어짐에 따라 박막의 두께는 감소하였으나, 격자상수에는 큰 변화가 없었고 박막두께분포의 균일성이 향상되었다.

  • PDF

펄스전류인가가 황동-알루미나 나노복합도금층의 경도에 미치는 영향 (Effect of Pulse Plating on Hardness of Brass-Alumina Nanocomposite)

  • 오영주;안재우;안종관;이만승
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.158-164
    • /
    • 2002
  • Nanocomposites consisting of a nanocrystalline brass matrix (grain size ; 20-100nm) with sub-micron sized Al2O3 particles (60-200nm) were prepared by pulsed current electrodeposition. The microhardness of the nanocomposite with a grain size of 90-100nm was approximately 1.7 times higher than that of a comparable electrodeposit with no particles. However, significant variations in microhardness were not observed between the nanocomposites with grain sizes of 20 nm and the comparable electrodeposit.

산화티타늄 광촉매와 펄스 방전 플라즈마 조합에 의한 공기정화장치 (Air Cleaning Unit using Combination of $TiO_2$ Photocatalyst and Pulsed Discharge Plasma)

  • 홍영기;신수연;강정훈;이성화;조정수;박정후
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권10호
    • /
    • pp.710-715
    • /
    • 1999
  • The purpose of this work is to develop a high-efficiency air cleaning system for air pollutants such as particulate and gaseous state in indoor environments. In order to enhance a removal efficiency of gaseous state pollutants, we suggested that pulsed discharge plasma be combined with $TiO_2$ photocatalyst (photocatalytic plasma air cleaning unit). We investigated experimentally the basic characteristics of photocatalytic plasma air cleaning unit and measured air pollutants removal efficiency. The wavelength of light radiated from pulsed discharge plasma under the atmospheric condition was 310~380nm. Its energy is enough to excite the $TiO_2$ photocatalyst and it makes a photochemical reaction in the surface of $TiO_2$ photocatalyst. The removal quantity of trimethylamine$((CH_3)_3N)\; was\; 130mg/m^34 which is twice quantity of pulsed discharge plasma without $TiO_2$ phtocatalyst unit. From the result of gas analysis using FT-IR, nitric oxide was not detected and trimethylamine was decomposed to $H_2O\; and \;CO_2$. And trimethylamine removal efficiency was 95%. These experimental results indicate that photocatalytic plasma air cleaning unit is a potential method in removing the pollutants.

  • PDF

LDMOS FET를 이용한 L-대역 고속 펄스 고전력 증폭기 설계 (Design of L-Band High Speed Pulsed High Power Amplifier Using LDMOS FET)

  • 이희민;홍성용
    • 한국전자파학회논문지
    • /
    • 제19권4호
    • /
    • pp.484-491
    • /
    • 2008
  • 본 논문에서는 LDMOS FET를 이용하여 스위칭 방식의 L-대역 고속 펄스 고전력 증폭기를 설계하고 제작하였다. 이를 위해 LDMOS FET의 드레인 전원을 스위칭하기 위한 고전압 스위칭 회로를 제안하였다. LDMOS FET를 이용한 펄스 고전력 증폭기는 단일 전원을 사용하고, 소자 특성상 이득과 출력이 높기 때문에 기존의 GaAs FET를 사용한 증폭기에 비해 구조가 간단하며, 사용 전압($V_{ds}=26{\sim}28\;V$)에 비해 최대 허용 전압(65 V)이 $2{\sim}3$배 높아 스위칭 방식에 적합하다. LDMOS FET를 이용하여 제작된 1.2 GHz 대역 100 W 펄스 증폭기는 펄스 폭이 2 us, PRF가 40 kHz의 출력 신호에서 상승 시간이 28.1 ns, 하강 시간이 26.6 ns로 측정되었다.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

수지상세포의 항원제시 능력 및 항암활성에 미치는 Lipofectin의 영향 (Effect of Lipofectin on Antigen-presenting Function and Anti-tumor Activity of Dendritic Cells)

  • 노영욱;임종석
    • IMMUNE NETWORK
    • /
    • 제6권2호
    • /
    • pp.102-110
    • /
    • 2006
  • Background: Dendritic cells (DC) are professional antigen-presenting cells in the immune system and can induce T cell response against virus infections, microbial pathogens, and tumors. Therefore, immunization using DC loaded with tumor-associated antigens (TAAs) is a powerful method of inducing anti-tumor immunity. For induction of effective anti-tumor immunity, antigens should be efficiently introduced into DC and presented on MHC class I molecules at high levels to activate antigen-specific $CD8^+$ T cells. We have been exploring methods for loading exogenous antigens into APC with high efficiency of Ag presentation. In this study, we tested the effect of the cationic liposome (Lipofectin) for transferring and loading exogenous model antigen (OVA protein) into BM-DC. Methods: Bone marrow-derived DC (EM-DC) were incubated with OVA-Lipofectin complexes and then co-cultured with B3Z cells. B3Z activation, which is expressed as the amount of ${\beta}$-galactosidase induced by TCR stimulation, was determined by an enzymatic assay using ${\beta}$-gal assay system. C57BL/6 mice were immunized with OVA-pulsed DC to monitor the in vivo vaccination effect. After vaccination, mice were inoculated with EG7-OVA tumor cells. Results: BM-DC pulsed with OVA-Lipofectin complexes showed more efficient presentation of OVA-peptide on MHC class I molecules than soluble OVA-pulsed DC. OVA-Lipofectin complexes-pulsed DC pretreated with an inhibitor of MHC class I-mediated antigen presentation, brefeldin A, showed reduced ability in presenting OVA peptide on their surface MHC class I molecules. Finally, immunization of OVA-Lipofectin complexes-pulsed DC protected mice against subsequent tumor challenge. Conclusion: Our data provide evidence that antigen-loading into DC using Lipofectin can promote MHC class I- restricted antigen presentation. Therefore, antigen-loading into DC using Lipofectin can be one of several useful tools for achieving efficient induction of antigen-specific immunity in DC-based immunotherapy.

Pulsed Magnetron Sputtering Deposit ion of DLC Films Part I : Low-Voltage Bias-Assisted Deposition

  • Oskomov, Konstantin V.;Chun, Hui-Gon;You, Yong-Zoo;Lee, Jing-Hyuk;Kim, Kwang-Bok;Cho, Tong-Yul;Sochogov, Nikolay S.;Zakharov, Alexender N.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.27-33
    • /
    • 2003
  • Pulsed magnetron sputtering of graphite target was employed for deposition of diamond-like carbon (DLC) films. Time-resolved probe measurements of magnetron discharge plasma have been performed. It was shown that the pulsed magnetron discharge plasma density ($∼10^{17}$ $m^{-3}$ ) is close to that of vacuum arc cathode sputtering of graphite. Raman spectroscopy was sed to examine DLC films produced at low ( $U_{sub}$ / < 1 kV) pulsed bias voltages applied to the substrate. It has been shown that maximum content of diamond-like carbon in the coating (50-60%) is achieved at energy per deposited carbon atom of $E_{c}$ =100 eV. In spite of rather high percentage of $sp^3$-bonded carbon atoms and good scratch-resistance, the films showed poor adhesion because of absence of ion mixing between the film and the substrates. Electric breakdowns occurring during the deposition of the insulating DLC film also thought to decrease its adhesion.

만성 요통 환자에서 박동성 전자기장 치료의 효과: 무작위, 이중맹검, 위약대조법을 이용한 연구 (Efficacy of Pulsed ElectroMagnetic Therapy for Chronic Lower Back Pain: a Double-Blind, Randomized, Placebo-Controlled Study)

  • 이평복;김용철;이상철
    • The Korean Journal of Pain
    • /
    • 제18권1호
    • /
    • pp.43-47
    • /
    • 2005
  • Background: The optimal management of pain using magnetic irradiation modalities continues to attract considerable debate. Therefore, we conducted a randomized, double-blind, placebo-controlled clinical trial to determine the effectiveness of pulsed electromagnetic therapy for the treatment of chronic lower back pain. Methods: Fifteen-minute sessions of active (n = 20) or placebo (n = 20) electromagnetic therapy were repeated 3 times a week for 3 weeks. Patients were assessed using the 11-point numerical rating scale and the revised Oswestry disability scores for up to 4 weeks after therapy. Results: The active magnetic group showed significantly more pain reduction than the placebo group immediately after therapy and one and four weeks after therapy (P < 0.05). At 4 weeks after therapy percentage changes in NRS from baseline were $22{\pm}24%$ and $38{\pm}11%$ in the placebo and magnetic groups, respectively. The revised Oswestry disability percentage in the active magnetic group was also significantly improved (P < 0.05). Conclusions: Pulsed electromagnetic therapy provided pain relief and ameliorated disability in patients with chronic lower back pain. According to our results, pulsed electromagnetic therapy should be considered an important potential therapeutic tool for the conservative therapy of chronic lower back pain.