Browse > Article

Pulsed Magnetron Sputtering Deposit ion of DLC Films Part I : Low-Voltage Bias-Assisted Deposition  

Oskomov, Konstantin V. (Inst. of High Current Electronics, Siberian Div. of RAS)
Chun, Hui-Gon (School of Materials Science and Engineering, ReMM, University of Ulsan)
You, Yong-Zoo (School of Materials Science and Engineering, ReMM, University of Ulsan)
Lee, Jing-Hyuk (School of Materials Science and Engineering, ReMM, University of Ulsan)
Kim, Kwang-Bok (School of Materials Science and Engineering, ReMM, University of Ulsan)
Cho, Tong-Yul (School of Materials Science and Engineering, ReMM, University of Ulsan)
Sochogov, Nikolay S. (Inst. of High Current Electronics, Siberian Div. of RAS)
Zakharov, Alexender N. (Inst. of High Current Electronics, Siberian Div. of RAS)
Publication Information
Journal of the Korean institute of surface engineering / v.36, no.1, 2003 , pp. 27-33 More about this Journal
Abstract
Pulsed magnetron sputtering of graphite target was employed for deposition of diamond-like carbon (DLC) films. Time-resolved probe measurements of magnetron discharge plasma have been performed. It was shown that the pulsed magnetron discharge plasma density ($∼10^{17}$ $m^{-3}$ ) is close to that of vacuum arc cathode sputtering of graphite. Raman spectroscopy was sed to examine DLC films produced at low ( $U_{sub}$ / < 1 kV) pulsed bias voltages applied to the substrate. It has been shown that maximum content of diamond-like carbon in the coating (50-60%) is achieved at energy per deposited carbon atom of $E_{c}$ =100 eV. In spite of rather high percentage of $sp^3$-bonded carbon atoms and good scratch-resistance, the films showed poor adhesion because of absence of ion mixing between the film and the substrates. Electric breakdowns occurring during the deposition of the insulating DLC film also thought to decrease its adhesion.
Keywords
Diamond-like carbon; Graphite; Pulsed magnetron sputtering; Low-voltage bias;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. V. Mozgrin, I. K. Fetisov, G. V. Khodachenko, Fizika Plazmy, 21 (1995) 422
2 M. M. M. Bilek, M. Chhowalla, W. I. Milne, Appl. Phys. Lett, 71 (1997) 1777   DOI   ScienceOn
3 R. Vuppuladhadium, H. E. Jackson, R. L. C. Wu, J. Appl. Phys., 77 (1995) 2714   DOI   ScienceOn
4 F. Qian, R. K. Singh, S. K. Dutta, P. P. Pronko, Appl. Phys. Lett, 67 (1995) 3120   DOI   ScienceOn
5 S. P. Bugaev, N. S. Sochugov, Surf. Coat. Technol., 131 (2000) 474   DOI   ScienceOn
6 A. A. Voevodin, S. J. P. Laube, S. D. Walck et al., J. Appl. Phys., 78 (1995) 4123   DOI   ScienceOn
7 C. V. Deshpandey, R. F. Bunshah, , A7 (1989) 2294
8 E. Mounier, Y. Pauleau, Diamond Relat. Mat. 6 (1997) 1182   DOI   ScienceOn
9 S. M. Rossnagel, M. A. Russak, J. J. Cuomo, J. Vac. Sci. Technol., A 5 (1987) 215
10 N. Sawldes, J. Appl. Phys., 59 (1986) 4133   DOI
11 L. G. Jacobsohn, F. L. Freire Jr., J. Vac. Sci Technol., A 17 (1999) 2841