• Title/Summary/Keyword: 3',5',7-Trihydroxyflavanone

Search Result 8, Processing Time 0.022 seconds

Studies on Biological Activity of Wood Extractives(VI) - Flavonoids in heartwood of Prunus sargentii - (수목추출물의 생리활성에 관한 연구(VI) - 산벚나무 심재의 Flavonoids -)

  • Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha;Kato, Atsushi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • The structures of six flavonoids isolated from heartwood of Prunus sargentii(Rosaceae) were analyzed by Mass and NMR spectrometry. These flavonoids were grouped into dihydroflavonol, flavanone, and flavanone glycoside, and identified as follows : 3,3',4',5,7-pentahydroxyflavanone(taxifolin) as a dihydroflavonol, 5-hydroxy-7-methoxyflavanone(pinostrobin), 4',5,7-trihydroxyflavanone(naringenin), 3',4',5,7-tetrahydroxyflavanone(eriodictyol), 5,7-dihydroxyflavanone(pinoccmbrin) as a flavanone and 7-hydroxyflavanone 5-O-${\beta}$-D-glucopyranoside(verecundin) as a flavanone glycoside.

  • PDF

Studies on Biological Activity of Wood Extractives (X) - Antifungal Compounds of Hovenia dulcis - (수목추출물의 생리활성에 관한 연구(X) - 헛개나무 목부의 항균활성 물질 -)

  • Choi, Yun-Jeong;Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Antimicrobial activities of plant extractives were investigated to develop a natural fungicide. Two stilbenoids and five flavonoids were isolated from wood extractives of Hovenia dulcis (Rhamnaceae) which had been selected due to its high antifungal activity among the tested species. The chemical structures of isolated compounds were determinded as : 5-hydroxy-7-methoxyflavone, 5,7-dihydroxyflavone (chrysin), 5,7-dihydroxyflavanone (pinocembrin), 3,5,7-trihydroxyflavanone (pinobanksin), 3,4',5,7-tetrahydroxyflavanone (aromadendrin), 3-hydroxy-5-methoxystilbene and 3,5-dihydroxystilbene (pinosylvin) on the basis of Mass and NMR spectroscopic data. According to the results of antifungal test, 3-hydroxy-5-methoxystilbene was evaluated as the strongest antifungal compound among the tested compounds and next were pinocembrin and pinosylvin, but those also had high hyphal growth inhibition activities against C. parasitica, T. versicolor, T. palustris and T. viride. However, pinobanksin, 5-hydroxy-7-methoxyflavone, chrysin and aromadendrin showed very low antifungal activity. In this regard, it could inferred that high antifungal activity of wood extractives of H. dulcis were derived from 3-hydroxy-5-methoxystilbene, pinocembrin and pinosylvin, respectively.

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.

Isolation and Identification of Antioxidants from Peanut Shells and the Relationship between Structure and Antioxidant Activity

  • Wee, Ji-Hyang;Moon, Jae-Hak;Eun, Jong-Bang;Chung, Jin-Ho;Kim, Young-Gook;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.116-122
    • /
    • 2007
  • Four compounds with antioxidant activity were isolated from the MeOH extract of peanut shells (pod) and identified as 5,7-dihydroxychromone (1), eriodictyol (2), 3',4',7-trihydroxyflavanone (3), and luteolin (4) by electron impact-mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) analyses. The relationship between antioxidant activity and chemical structure of the isolated compounds with their analogues [(-)-epicatechin, quercetin, taxifolin] was examined by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and using the 2-deoxy-D-ribose degradation system. The order of antioxidant activity on the basis of DPPH radical-scavenging was quercetin = (-)-epicatechin (6.0 molecules) > taxifolin (4,5 molecules) > 4 (luteolin; 4.0 molecules) > 2 (eriodictyol; 2.5 molecules) > 3 (3',4',7-trihydroxy-flavanone; 2.0 molecules) > 1 (5,7-dihydroxychromone; 0.5 molecules). On the other hand, using the 2-deoxy-D-ribose degradation system, the order of antioxidant activity was quercetin > 4 >> (-)-epicatechin ${\geq}\;2\;{\geq}$ taxifolin > 3 > 1. These compounds from peanut shells may provide defensive measures against oxidative stress and insects in the soil.

Flavonoid Inhibitors of β-Ketoacyl Acyl Carrier Protein Synthase III against Methicillin-Resistant Staphylococcus aureus

  • Lee, Jee-Young;Lee, Ju-Ho;Jeong, Ki-Woong;Lee, Eun-Jung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2695-2699
    • /
    • 2011
  • ${\beta}$ Ketoacyl acyl carrier protein synthase III (KAS III) initiates fatty acid synthesis in bacteria and is a key target enzyme to overcome the antibiotic resistance problem. In our previous study, we found flavonoid inhibitors of Enterococcus faecalis KAS III and proposed three potent antimicrobial flavonoids against Enterococcus faecalis and Vancomycin-resistant Enterococcus faecalis with MIC values in the range of 128-512 ${\mu}g/mL$ as well as high binding affinities on the order from $10^6$ to $10^7\;M^{-1}$. Using these series of flavonoids, we conducted biological assays as well as docking study to find potent flavonoids inhibitors of Staphylococcus aureus KAS III with specificities against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Here, we propose that naringenin (5,7,4'-trihydroxyflavanone) and eriodictyol (5,7,3',4'-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III with binding affinity of $3.35{\times}10^5$ and $2.01{\times}10^5\;M^{-1}$, respectively. Since Arg38 in efKAS III is replaced with Met36 in saKAS III, this key difference caused one hydrogen bond missing in saKAS III compared with efKAS III, resulting in slight discrepancy in their binding interactions as well as decrease in binding affinities. 4'-OH and 7-OH of these flavonoids participated in hydrogen bonding interactions with backbone carbonyl of Phe298 and Ser152, respectively. In particular, these flavonoids display potent antimicrobial activities against various MRSA strains in the range of 64 to 128 ${\mu}M$ with good binding affinities.

Tyrosinase Inhibitory Constituents of Morus bombycis Cortex

  • Kang, Kyo-Bin;Kim, Sang-Du;Kim, Tae-Bum;Jeong, Eun-Ju;Kim, Young-Choong;Sung, Jong-Hyuk;Sung, Sang-Hyun
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.198-201
    • /
    • 2011
  • Tyrosinase is one of the important enzymes in the mammalian melanin synthesis. In the process of melanin synthesis, tyrosine is oxidized to DOPA (3,4-dihydroxyphenylalanine), and DOPA is further oxidized to dopaquinone. Tyrosinase is an enzyme catalyzing this oxidation of tyrosine, so chemicals that inhibit the activity of tyrosinase can be used as skin whitening agents. In this study, we isolated five constituents from the 80% MeOH extract of Morus bombycis cortex by bioactivity-guided fractionation. We performed mushroom tyrosinase inhibition assay. As a result, 7,2',4'-trihydroxyflavanone (1), 2',4',2,4,-tetrahydroxychalcone (2), and oxyresveratrol (3) showed the more potent inhibitory effect compared to kojic acid, a well-known skin whitening agent with antityrosinase effect. Moracinoside M (4) and moracin M-3'-O-${\beta}$-D-glucopyranoside (5) also showed the moderate tyrosinase inhibitory activities.

Studies on Biological Activity of Wood Extractives(VII) - Antimicrobial and Antioxidation Activities of Extractives from the Heartwood of Prunus sargentii - (수목추출물의 생리활성에 관한 연구(VII) - 산벚나무 심재 추출성분의 항균 및 항산화활성 -)

  • Lee, Sung-Suk;Lee, Hak-Ju;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.140-145
    • /
    • 2001
  • Antimicrobial and antioxidative activities on heartwood extractives of domestic species were investigated to develop a natural fungicide or preservative. Six flavanones including pinostrobin, eriodictyol, naringenin, pinocembrin, taxifolin and verecundin were isolated from Prunus sargentii which has been selected due to its high antimicrobial and antioxidative activities among the tested species. According to the results of antifungal test, pinocembrin was evaluated as the highest antifungal compound among the test compounds, which showed 80% of hyphal growth inhibition rate. Antifungal activity of pinocembrin was similar to hinokitiol(${\beta}$-thujaplicin), strong antimicrobial compound isolated from Thujopsis dolabrata. Naringenin followed pinocembrin in its antifungal activity. However, verecundin did not show any antifungal activity. No compound was effective in antibacterial activities. As a result of the measurement of free radical scavenging activity, antioxidative activities of taxifolin and eriodictyol were 2 times that of ${\alpha}$-tocopherol, and antioxidative index of these compounds were even superior to that of ${\alpha}$-tocopherol. In this regard, it could inferred that high antifungal and antioxidative activities of extractives of P. sargentii were derived from pinocembrin, taxifolin and eriodictyol, respectively.

  • PDF