• Title/Summary/Keyword: 2Wheel

Search Result 1,132, Processing Time 0.03 seconds

Improved Model of the Iron Loss for the Permanent Magnet Synchronous Motors

  • Junaid, Ikram;Nasrullah, Khan;Kwon, Byung-Il
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents an improved iron loss model, for the computation of the no load iron loss in the stator core of the in-wheel permanent magnet synchronous motors (PMSM), for the cases of with and without stator skew. 2-D analytical model is used for the computation of tooth and yoke flux densities of the in-wheel PMSM. The no load iron loss computed by the improved iron loss model, for the cases of with and without skew is compared with the finite element method (FEM) and the results show good consistency.

Synthesis and Shuttling Behavior of Rotaxanes Consisting of Crown Ether Wheel and Disulfide Dumbbell with Two Ammonium Centers

  • Furusho, Yoshio;Sanno, Ryoko;Oku, Tomoya;Takata, Toshikazu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1641-1644
    • /
    • 2004
  • Several [2]- and [3]rotaxanes bearing some functional groups on their wheel components and spacers with different lengths between two ammonium centers on their dumbbell components were prepared in good yields from dibenzo-24-crown-8-ether derivatives and dumbbell-shaped bis(sec-ammonium salt)s having a centrally located disulfide linkage, by utilizing the reversible thiol-disulfide interchange reaction. The shuttling behaviors of the [2]rotaxanes were investigated by $^1H$ NMR by use of the spin polarization transfer-selective inversion recovery technique. It was found that the change in spacer length in the axle resulted in a drastic change in shuttling rate of the [2]rotaxanes, although the introduction of the functional groups to the wheels did not affect the shuttling behavior at all.

A mobile robot for going over obstacles in nuclear facilities (원전시설용 이동로보트의 장애물 승월에 관한 연구)

  • 김병수;김창희;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.166-171
    • /
    • 1989
  • In the view of the fact that mobile robot in nuclear facilities should be able to turn in narrow space, go over obstacles, and climb stairs for the inspection and maintenance, a robot, named as KAEROT, is developed. It adopts 2DWIS (2-Driving Wheels, 1-Steering) and has three planetary wheels that are composed of two star-like arms and three small wheels. The experiments were carried out in two locomotion methods; (1) by controlling the rear wheel speed as a function of steering angle, and (2) by using inclination and stair-detection sensor to control the position of planetary and small wheel. The developed robot moved on the floor with stability. Results from the experiment on the rectangular obstacle as well as the computer simulation showed a feasibility on the stairs.

  • PDF

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • Lee, Byung-Duck;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.15-24
    • /
    • 2003
  • The performance of waterproofing system (WPS) is known to be a function of many complex interaction of material factors, design details, and the quality of construction, but it is mainly determined by the bond strength, which is measured by tensile adhesive strength (TAS) test. to the concrete bridge deck. In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the WPS on concrete bridge deck were investigated in view of various factor in asphalt pavement. The factors include type of asphalt mixture, pavement thickness, paving temperature and influence of wheel loading. TAS test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. TAS of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. The influence of thickness of pavement val minimal with given laboratory test condition. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP). Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength. But liquid membranes were variable on types. The feature of detached interface after TAS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS.

  • PDF

Real Time Balancing Control of 2 Wheel Robot Using a Predictive Controller (예측 제어기를 이용한 2바퀴 로봇의 실시간 균형제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.3
    • /
    • pp.11-16
    • /
    • 2014
  • In this paper, the two-wheels robot using a predictive controller to maintain the balance of the posture control in real time have been examined. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. The objective of this research was to design and implement a self-balancing algorithm using the dsPIC30F4013 embedded processor. To calculate the attitude in ARS using 2 axis gyro(roll, pitch) and 3 axis accelerometers (x, y, z). In this study, the disturbance of the posture for the asymmetrical propose to overcome the predictive controller which was a problem in the control of a remote system by introducing the two wheels of the robot controller and the linear prediction of the system controller combines the simulation was performed. Also, the robust characteristic for realizing the goal of designing a loop filter too robust controller is designed so that satisfactory stability of the control system to improve stability of the system to minimize degradation of performance was confirmed.

The Magnetic and Magnetostrictive Properties of Melt-Spun Ribbons of B Containing Terfenol-D Alloys

  • Kim, S. R.;S. Y. Kang;S. H. Lim
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The magnetic and magnetostrictive properties of melt-spun ribbons of the alloys (R0.33Fe0.67)1-xBx (R=Tb0.3Dy0.7 and 0$\leq$x$\leq$0.06) are ivestigated as a function of wheel speed during melt-quenching. The saturation magnetiation of the alloys with a crystalline phase ranges from 70 to 80 emu/g and does not vary substantially with the B content. The saturation magnetization of an amorphous phase, which is formed at the condition of thigh wheel speed and high B content, is reduced significantly, however. The coercive force is minimum at x= 0.02 and increases monotonously with the further increase of B content when the microstructure mainly consists of a crystalline phase, but again it is reduced significantly by the formation of an amorphous phase. The low field sensitivity of magnetostriction with magnetic field is found to be good for the alloys with x$\leq$0.04 over a wide range of wheel speed. This magnetostrictive behavior is in contrast with that observed previously for Dy-Fe and Tb-Fe based alloys and is thought to be due to low intrinsic magnetocrystalline anisotropy of the compound.

  • PDF

Analysis on Triaxial Velocity induced by Wheel Off-loading of Geostationary Satellite (정지궤도위성의 휠모멘텀 제어에 의해 발생되는 3축 궤도병진 속도에 관한 분석)

  • Park, Young-Woong;Park, Keun-Joo;Kim, Dae-Kwan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.88-94
    • /
    • 2008
  • In this study, triaxial velocity is analyzed for COMS(Communication, Ocean and Meteorological Satellite) configuration, which is generated when thrusters are used to dump wheel momentum. Since COMS is designed to periodically change the thruster set in order to uniformly decrease the performance of thrusters, triaxial velocity would be different during the change of thruster set. So, the triaxial velocity generated due to the change of thruster set is optimized.

  • PDF

The Nonlinear Simulation on the Selection of Suitable Suspension Considering Human Vibration (인체 진동을 고려한 최적 현가장치의 선정에 관한 비선형 모의실험)

  • 김진기;홍동표;최만용
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.247-253
    • /
    • 2000
  • The evaluation of the ride quality had been performed by the subjective method before ISO2631(International Organization for Stadard 2631) and BS6841(British Standard 6841) was precented, but many research programs have been performed by the objective method after that. On this study, the ride quality was evaluated related with the objective method which considered the vibration which the human body feels on the driver's seat while driving on the road. In particular, we made the shock absorber nonlinear model and also selected the suitable shock absorber in the part of the vibration which the human body feels into the simulation. The shock absorber of suspension was dealt with 3 cases respectively with the front wheel and rear wheel. The vibration of the car driving on the road can be transferred to the wheel, the suspension, the vehicle body, the seat and the human body. The signal which was gained from the seat(hip) and the floor(foot) of the human body was changed to the vibration signal which the human body felt through using the frequency weighting function. And then the performance of the shock absorber was calculated through the statistic processing.

  • PDF

A Parametric Study about Blade Shapes and Blade Numbers of Water Wheel Type Tidal Turbine by Numerical Method

  • Nguyen, Manh Hung;Jeong, Haechang;Jhang, Sung-su;Kim, Bu-gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • In this paper, a numerical experiment on a tidal turbine was performed based on a water wheel design using the commercial CFD code ANSYS-CFX to contribute to the development of water wheels. The water wheel type tidal turbine was studied with different numbers of rotor blades (including ten, twelve and twenty blades types) and with different blade shapes (Straight, Curved and Zuppinger types) for comparison at several values of tip speed ratio (TSR) ranging from 0.7 to 1.2. The numerical results indicated that the 10-bladed type and the Straight-bladed type turbines absorb the highest power efficiency, up to 43 % at TSR 0.9. In addition, the 20-bladed and the Curved-bladed types showed the lowest performances in all cases of TSRs comparing with the others. Besides that, it was found that this turbine operates much effectively at low range of TSR, especially at TSRs 0.9 and 1 for all cases of blade shapes and all numbers of blades.