• Title/Summary/Keyword: 2D grading

Search Result 97, Processing Time 0.026 seconds

Sea Cucumber (Stichopus japonicus) Grading System Based on Morphological Features during Rehydration Process (수화 시의 형태학적 특징에 따른 건해삼의 등급 분류 시스템 개발)

  • Lee, Choong Uk;Yoon, Won Byong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.374-380
    • /
    • 2017
  • Image analysis and k-mean clustering were conducted to develop a grading system of dried sea cucumber (SC) based on rehydration rate. The SC images were obtained by taking pictures in a box under controlled light conditions. The region of interest was extracted to depict the shape of the SC in a 2D graph, and those 2D shapes were rendered to build a 3D model. The results from the image analysis provided the morphological features of the SC, including length, width, surface area, and volume, to obtain the parameters of the k-mean clustering weight. The k-mean clustering classified the SC samples into three different grades. Each SC sample was rehydrated at $30^{\circ}C$ for 40 h. During rehydration, the flux of each grade was analyzed. Our study demonstrates that the mass transfer rate of SC increased as the surface area increased, and the grade of SC was classified based on rehydration rate. This study suggests that the optimal rehydration process for SC can be achieved by applying a suitable grading system.

Characteristic Evaluation of Bending Strength Distributions on Revised Korean Visual Grading Rule (개정된 육안등급 구분에 따른 휨강도 특성 평가)

  • Pang, Sung-Jun;Oh, Jung-Kwon;Park, Chun-Young;Park, Joo-Saeng;Park, Mun-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, the visual grading rule of Korea Forest Research Institute (KFRI) was revised and it is necessary to investigate the distribution characteristics of visual graded lumber in accordance with the revised rule. Therefore, in this study, the distribution characteristics of bending strength was investigated with revised visual grading rule and changed prior rule, respectively. The size of specimens was $38{\times}140{\times}3,000$ (mm) and the species were $Larix$ $kaempferi$ and $Pinus$ $koraiensis$. The moisture content was under 18% and the specimens were tested in accordance with ASTM D-198. The number of No. 1 and 2 grades, suitable for structural lumber, was increased when the revised visual grading rule was applied. Moreover, the revised rule was more effective to distinguish sharply between No. 1 and 2 grades and below No. 3 grade. Meanwhile, the lower 5% exclusion limit and allowable stresses were generally decreased when revised visual grading rule had been applied. However, the announcement of Korea Forest Service, tested with small clear specimen, was much lower than the allowable stresses of this test, tested with structural lumber. Therefore, the revision of allowable design values should be considered for more exact use and effective structural design.

Sorting Cut Roses with Color Image Processing and Neural Network

  • Bae, Yeong Hwan;Seo, Hyong Seog;Choi, Khy Hong
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.100-105
    • /
    • 2000
  • Quality sorting of cut flowers is very essential to increase the value of products. There are many factors that determine the quality of cut flowers such as length, thickness, and straightness of stem, and color and maturity of bud. Among these factors, the straightness of stem and the maturity of bud are generally considered to be more difficult to evaluate. A prototype grading and sorting machine for cut flowers was developed and tested for a rose variety. The machine consisted of a chain-drive feed mechanism, a pneumatic discharge system, and a grading system utilizing color image processing and neural network. Artificial neural network algorithm was utilized to grade cut roses based on the straightness of stem and maturity of bud. Test results showed 89% agreement with human expert for the straightness of stem and 90% agreement for the maturity of bud. Average processing time for evaluating straightness of the stem and maturity of the bud were 1.01 and 0.44 second, respectively. Application of neural network eliminated difficulties in determining criteria of each grade category while maintaining similar level of classification error.

  • PDF

Analysis of Electric Field Distribution of High Voltage Polymeric Bushing with Structure (초고압 폴리머 부싱의 구조에 따른 전계분포 해석)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.489-490
    • /
    • 2008
  • This paper describes the analysis of electric field distribution of high voltage polymeric bushing with structure. The high voltage bushing consists of FRP tube and housing made of LSR. The field control can be achieved by means of the design of such internal field shaper and top corona ring as grading electrodes. In accordance, the optimized design uses both internal and external elements for electric stress grading at critical parts of the bushing. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymeric bushing.

  • PDF

The Development of 3D Gauge Curve Generation Method using NURBS Curve in Shoe Sole modeling (NURBS곡선을 이용한 3D Gauge 곡선의 모델링 기술 개발)

  • 배태용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.317-322
    • /
    • 2004
  • Productivity of shoe industry in Korea is still more excellent then that of China or Vietnam, But manufacturing technology and productive facility are underdevelopment in comparison advanced country. CAD/CAM system development, one of the most important technology, is totally nonexistent. specially, the automatic generation function and the grading function in shoe sole modeling are dependent of the foreign software. The CAD/CAM software only for shoe modeling is very expensive, so that it is going to weaken shoe industry of Korea. Therefore, We developed 3D gauge curve generation method using 2D NURBS curve in shoe sole modeling.

  • PDF

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

3D Quantitative Analysis of Cell Nuclei Based on Digital Image Cytometry (디지털 영상 세포 측정법에 기반한 세포핵의 3차원 정량적 분석)

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.846-855
    • /
    • 2007
  • Significant feature extraction in cancer cell image analysis is an important process for grading cell carcinoma. In this study, we propose a method for 3D quantitative analysis of cell nuclei based upon digital image cytometry. First, we acquired volumetric renal cell carcinoma data for each grade using confocal laser scanning microscopy and segmented cell nuclei employing color features based upon a supervised teaming scheme. For 3D visualization, we used a contour-based method for surface rendering and a 3D texture mapping method for volume rendering. We then defined and extracted the 3D morphological features of cell nuclei. To evaluate what quantitative features of 3D analysis could contribute to diagnostic information, we analyzed the statistical significance of the extracted 3D features in each grade using an analysis of variance (ANOVA). Finally, we compared the 2D with the 3D features of cell nuclei and analyzed the correlations between them. We found statistically significant correlations between nuclear grade and 3D morphological features. The proposed method has potential for use as fundamental research in developing a new nuclear grading system for accurate diagnosis and prediction of prognosis.

  • PDF

Study on the Tussah Silk Reeling Method (작잠견제사에 관한 연구 (제4보))

  • 박병희
    • Journal of Sericultural and Entomological Science
    • /
    • v.5
    • /
    • pp.63-66
    • /
    • 1965
  • This experimental work is aimed to find out if there is a reasonable tussah silk reeling service. The results obtained are as follows, 1) The best silk reeling rate of tussah cocoon was 8.02% by dupion reeling machine, 7.44% by common with Autumn cocoons, and 7.23% by dupion machine, 6.79% by common with Spring. Those results are sup-erior to 6.00% of the former. 2) The cocoon grading ratio was 63∼68% with Autumn cocoons md 66∼70% with Spring. Spring cocoons showved more 2∼3% than Autumn in cocoon grading ratio. These seem to be resulted from the weather condition. 3) The reeling efficiency was 70g per labor for an hour. 4) The strength of tussah silk war 3g/d and elongation 26% The strength of tussah silk is weaker, and the elongation of it larger than those of raw silk. 5) As these results, the enterprise of the tussah silk reeling has become possible, and will develop as a new industry. Therefore. it is demanded that this new industry will be helped by the Government to get foreign money.

  • PDF