• 제목/요약/키워드: 2D E, Panax ginseng

검색결과 32건 처리시간 0.032초

EFFECTS OF PANAX GINSENG SAPONINS ON CHEMICAL MEDIATOR RELEASE FROM AIRWAY SMOOTH MUSCLE IN ACTIVELY SENSITIZED GUINEA PIG

  • Ro Jai Youl;Yoon Suk Jong;Lee Jong Wha;Kim Kyung Hwan
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1993년도 학술대회지
    • /
    • pp.84-93
    • /
    • 1993
  • It has been reported that ginseng is effective in the central nervous system, immune system, and the strong inflammatory responses. However, there has been no research report yet about the effect of ginseng on allergic hypersensitivity reactivity. To confirm the ginseng effects on the release of mediators(histamine. leukotrienes etc.) which cause the hypersensitivity reactivity and inflammatory response, we used actively sensitized guinea pig airway tissues by utilizing the superfusion technique. In this procedure. the contractile response and mediators released after antigen stimulation of sensitized tissues, and IgG and IgE antibody products were measured in sera of immunized animals. Then the results of the controll group were compared to those of ginseng pretreatment groups. In the total saponin(TS) and panaxatriol(PT) pretreatment, histamine release decreased by $20\%$ in the tracheal tissues after active sensitization by ovalbumin(OVA, 10mg/kg), but in the lung parenchyma, histamine release decreased by $40\%.$ Panaxadiol(PD) significantly decreased histamine release by $40\%$ in the both tissues after active sensitization. TS, PT and PD of ginseng poorly blocked leukotrienes (LTs) and prostagrandin $D_2(PGD_2)$ release(less than $10\%$). Ginseng TS and PT had no effect on the serum IgG antibody production by ovalbumin, whereas PD significantly increased serum IgG antibody contents(approximately by 2 times). However, $IgG_1$ antibody products in the serum of guinea pig actively sensitized with ovalbumin after PD pretreatment were decreased, compared to that with ovalbumin alone. IgE antibody production by passive cutaneous anaphylaxis(PCA) titer in the TS pretreatment increased 3 times more than in the absence of TS(PCA titer by PT was not detected). These studies show that some ginseng saponins can in part act to inhibit mediator release in antigen - induced airway smooth muscle by inducing the IgG antibody production which has been changed in the specificity.

  • PDF

소독제 및 항생제의 적변삼 발생 억제 효과 (Inhibitory Effect of Disinfectants and Antibiotics on Rusty-root Symptoms in Panax Ginseng C. A. Meyer)

  • 박홍우;이은정;최재을
    • 한국약용작물학회지
    • /
    • 제14권6호
    • /
    • pp.336-341
    • /
    • 2006
  • The endophytic bacteria were isolated from the rusty-root ginseng. This isolated bacteria were occurred the rusty-root ginseng with artificial inoculation. For the suppressing of rusty-ginseng, disinfectants, antibiotics, kitosan, micro-organisms and metabolites were tested to isolated endophytic bacterium. All of the isolated bacteria strains were sensitive sodium hypochlorite, however, some of isolated bacteria lines were sensitive to other tested materials. For example, D (didecyl dimethyl ammonium bromide), CIO$_2$, ODDA (octyldecyl dimethyl ammonium chloride + diocyul dimethyl ammonium chloride + alkyl diethyl benzyl ammonium chloride), GD (glutaraldehyde + dimethy cocobenzyl ammonium chloride) suppressed some of bacteria strains. Otherwise, some of antibiotics (e.g. ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin, rifampin, streptomycin, tetracycline) were sensitive to the isolated bacteria strains. All of isolated bacteria strainswere inhibitive to the mixed formation with neomycin and streptomycin, and neomycin and tetracycline. Both sodium hypochlorite and antibiotic mixing of neomycin and tetracycline were effective to prevention of rusty-root ginseng of sub-merging ginseng in the ginseng field.

인삼식물(人參植物)에 관한 연구(III) -동위원소화합물(洞位元素化合物) Sodium $Acetate-U-C^{14}$을 투여한 실험- (Studies on the Ginseng Plants(III) -Radioactive Sodium $Acetate-U-C^{14}$ Feeding Experiments-)

  • 김정연;이. 죤 스태바
    • 생약학회지
    • /
    • 제5권2호
    • /
    • pp.111-124
    • /
    • 1974
  • 방사성 동위 원소화합물 소디움 아세테이트$-V-C^{14}(C^{14}$-아세데이트)를 2년생과 4년생 7월, 9월 미국인삼(오갈피 나무과, Panax quinquefolium L.) 식물과 캇팅(Cutting) 에 각기 심지법에 의하여 투여하였다. $C^{14}$아세테이트 섭취율은 약 99%였다. 오토래디오크로매토그램은 제조적 박층 크로매토그래피로 분리한 사포닌들이 불순물을 함유하고 있음을 제시하였으며 특히 잎이나 줄기 엑기스에서 분리한 사포닌들에 불순물이 많이 섞여 있음을 알았다. 뿌리 및 과실 메타놀 엑기스는 상대적으로 순수한 사포닌들을 얻을 수 있다. 패나퀼린 B의 과량으로 인한 패나퀼린 C에 대한 패나퀼린 B의 꼬리는 제조적 박층 크로매토그래피에서 서로 혼교되는 결과를 얻었다. 일차 정제된 사포닌들의 평균 함량(건조 식물에 대한 %)은 과실(9.8%), 줄기(7.9%), 뿌리(6.3%)에 비하여 잎(13.8%)에 높았다. $C^{14}$아세테이트가 패나퀼린으로 인코포레이트되는 평균 %는 48%였다. 패나퀼린 B와 C로 $C^{14}$아세테이트가 인코포레이트되는 평균 %는 패나퀼린 C (0.75%), (d) (0.65%). G-1 (0.13%) G-2 (0.53%)보다 높았다. (패나퀼린 B 1.40%, C 1.13%). 패나퀼린 합성은 식물의 채취 부위, 채취 시기 및 연령에 따라 를린다고 사료된다. 패나퀼린 B 에 $C^{14}$아세테이트가 인코포레이트되는 평균 함량은 뿌리(0.58%)와 줄기(0.48%)에서 높았고, 패나퀼린 C(0.40%)와 (d) (0.45%)는 잎에서 높았고, 패나퀼린 E는 뿌리 (0.55%)와 잎(0.50%)에서 각기 높았다. 패나퀼린 G-2는 식물의 모든 부위에서 생합성되어 졌다. 패나퀼린은 9월에 채집한 식물에서 보다 7월에 채집한 식물에서 보다 활발하게 생합성되는 것처럼 보였다(예외 패나퀼린 G-1). 패나퀼린 B, C, G-1은 4년생 식물에서 활발하게 생합성되고 패나퀼린 (d)와 E는 2년생 식물에서 활발하게 생합성된다고 사료된다. 캇팅에서 기대된 결과들은 패나퀼린들이 인삼 식물의 지상부위에서 새로히 합성되고 괘나퀼린 G-1은 잎에서 새로히 합성된다고 하는 것 들이다. 인삼 조직 배양 연구에서 알려진 바와 같이 패나퀼린들은 미국인삼과 한국인삼의 잎, 줄기, 뿌리 캘러스 조직에 의하여서도 합성될 뿐만 아니라 또한 그들의 캘러스 뿌리에서도 패나퀼린들이 항성된다. 따라서 인삼 사포닌인 패나퀼린은 인삼 식물의 세포나 기관등 모든곳에서 새로히 합성된다고 사료할 수 있다. $C^{14}$아세테이트가 패나퀼린의 비당체 부분에도 인코포레이트되는 것을 입증하였는데, 2년생 식물에서 패낙사다이올은 $(0.56\;m{\mu}Ci/mg)$, 4년생 식물에서 패낙사다이올은 $(0.54\;m{\mu}Ci/mg)$스페시획 액티비티를 갖었다.

  • PDF

PLANT BIOCHEMISTRY OF GINSENG SAPONINS(III) Radioactive Studies (2). Sodium Acetate-U-$C^{14}$ Experiment

  • 고려인삼학회
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1974년도 학술대회지
    • /
    • pp.101-113
    • /
    • 1974
  • The radioactive compound sodium $acetate-U-C^{14}$ (C-14 acetate) was administered to two- and four-year-old July and September American ginseng (Panax quinquefolium L.) plants and cuttings. The C-14 acetate uptake was approximately $99\%.$ The autoradiochromatograms suggest that the saponins(panaquilins) isolated by preparative thin-layer chromatography contained impurities, especially those isolated from the leaf and stem extracts. The root and fruit methanol extracts yielded relatively pure saponins. The large amounts of panaquilin B and its proximity to panaquilin C on preparative thin-layer plates resulted in some admixing. The average concentration $(\%$ plant dry weight) of semipurified saponins were high in the leaves $(13.8\%),$ compared to fruits $(9.8\%),\;stems\;(7.9\%)\;and\;roots\;(6.3\%).$ The average percentage of C-14 acetate incorporation into panaquilins was $4.8\%.$ The average percentage of C-14 acetate incorporation into panaquilins B and C was higher $(1.40\%\;and\;1.13\%,$ respectively) than that into panaquilin C, (d), G-1 and G-2 $(0.75\%,\;0.65\%,\;0.13\%\;and\;0.53\%,$ respectively). Panaquilin synthesis may be depending upon the part collection period and age of the plant. The average percentage of C-14 acetate incorporation into panaquilin B is high in roots $(0.58\%)\;and\;stems\;(0.48\%);$ that into panaquilins C and (d) high in leaves $(0.40\%\;and\;0.45\%,$ respectively); and that into panaquilin E high in roots and leaves $(0.55\%\and\;0.50\%,$ respectively). Panaquilin G-2 was synthesized in all parts of plants. The panaquilins appear to be biosynthesized more actively in July than September (exception-panaquilin G-l). Panaquilins B, C and G-1 may be biosynthesized more actively in four-year-old plants and panaquilins (d) and E more actively in two-year-old plants. The results from expectance with cuttings suggest that the panaquilins are synthesized de novo in the above-ground parts of ginseng plants, and that panaquilin G-l may be synthesized de novo in the leaf. It is known from the tissue culture studies that panaquilins are produced by leaf, stem and root callus tissues and callus-root cultures of American and Korean ginseng plants. Panaquilins may actively be synthesized de novo in most any cell or organ of the ginseng plants. It was verified that C-14 acetate was incorporated into the panaxadiol portions of the panaquilins of two-year-old plants (sp. act., 0.56 $m{\mu}Ci/mg$) and four-year-old plants (sp. act., 0.54 $m{\mu}Ci/mg$).

  • PDF

감자썩이선충의 밀도변화(密度變化)와 인삼생육(人蔘生育)에 대(對)한 약제처리(藥劑處理) 효과(效果) (Effects of Chemical Treatments on Population Changes of Ditylenchus destructor and Responses of Panax ginseng)

  • 오승환;유연현;조대휘;이장호;김영호
    • 한국응용곤충학회지
    • /
    • 제25권3호
    • /
    • pp.169-173
    • /
    • 1986
  • 감자썩이선충(Ditylenchus destructor)에 의해 폐포(廢圃)된 강원도 철원지역(鐵原地域) 인삼포(人蔘圃)에 훈증제(熏蒸劑) 및 비훈증제(非熏蒸劑) 약제(藥劑)를 처리하고 인삼(人蔘)을 식부(植付)한 후, 재배기간중(栽培期間中)에 ethoprop, aldicarb, carbofuran, phenamiphos, triazophos, oxamyl 등(等)을 인삼(人蔘) 2년근시(年根時)와 3년근시(年根時)에 한달 간격으로 각각(各各) 2회(回)와 3회(回)씩 처리(處理)하였다. 예정지(豫定地)에 cylon, ethoprop 및 triazophos 처리구(處理區)는 1984년 인삼(人蔘) 3년근시(年根時) 선충의 밀도(密度)는 무처리구(無處理區), formalin 훈증구(熏蒸區) 및 carbofuran 처리구(處理區)보다 상대적으로 낮았으며 3년(年), 4년근(年根)의 출아율(出芽率)과 3년근(年根)의 병발생억제(病發生柳制)에 효과가 있었다. cylon 훈증후(熏蒸後) 재배기간중(栽培期間中) 약제처리(藥劑處理)는 cylon 단독 처리포장(處理圃場)에 비해 선충의 밀도(密度)감소와 출아율(出芽率) 및 병발생억제(病發生柳制)에는 효과가 크지 않았으나 채굴시 4년근(年根)의 잔존율(殘存率) 및 인삼근(人蔘根) 수량(收量)에는 차이를 안정할 수 있었다. 칸당(當) 1kg 이상의 인삼근(人蔘根) 수량(收量)은 cylon 처리후(處理後) 재배기간중(栽培期間中) aldicarb 또는 ethoprop 처리구(處理區)와 예정지(豫定地)부터 ethoprop을 처리(處理)한 포장(圃場)에서 얻을 수 있었다. 인삼생육(人蔘生育)과 선충밀도와의 상관은 조사당시 뿐만 아니라 조사시기(調査時期)를 전후로 하여 유의성(有意性)있는 상관을 보여 토양중(土壤中) 감자썩이 선충이 인삼(人蔘)의 생육(生育)에 직접적으로 영향을 주는 것으로 생각된다.

  • PDF

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

  • Go, Ga-Yeon;Lee, Sang-Jin;Jo, Ayoung;Lee, Jaecheol;Seo, Dong-Wan;Kang, Jong-Sun;Kim, Si-Kwan;Kim, Su-Nam;Kim, Yong Kee;Bae, Gyu-Un
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.608-614
    • /
    • 2017
  • Background: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

한국인삼론(韓國人蔘論) (Current Status of Korean Ginseng Research)

  • 한병훈
    • 생약학회지
    • /
    • 제3권3호
    • /
    • pp.151-160
    • /
    • 1972
  • Recent achievements of scientific research on the pharmacologic activities and the chemical problems of dammalene glycosides, which are considered to be effective principles of Korean ginseng, are reviewed and analyzed in view of structure-activity relationship. 1) S. Shibata and his co-workers detected 12 glycoside spots of dammalene series on the two dimensional T.L.C. of total glycoside fraction from Japanese ginseng, and designated them Ginsenoside Rx(x=a, b, c, g, h, etc.) in the order of increasing Rf-value. The aglycones of those glycosides were characterized to be protopanaxadiol for the Ginsenoside $Rx(x=a,\;b_{1},\;b_{2},\;c,\;d,\;e,\;f)$ and protopanaxatriol for the Ginsenoside $Rx(x=g_{1},\;g_{2},\;g_{3},\;h_{1}\;'h_{2})$. Using Korean ginseng as the material for our study, the author and his coworkers isolated a new dammalene glycoside(Panax Saponin C), which comes under the category of protopanaxadiol glycosides based on the classification of S. Shibata et al., and characterized this saponin to be the glycoside of protopanaxatriol series. Furthermore, Panax Saponin C dissociated into $two\;components(C_{1}\;and\;C_{2}-acetate)$ by acetylation, both of which returned to original Panax Saponin C by deacetylation. Based on this result, more than 13 glycoside components of dammalene series will be expected in the Korean ginseng. 2) The structures of protopanaxadiol and protopanaxatriol, the genuine aglycones of dammalene glycosides, are fully established to be structural analogues by S. Shibata and his co-workers, therefore antagonistic and/or analogical activities will be expected for the pharmacologic activities of these glycoside series of structural analogues. K. Takaki and his co-workers found central nervous system (CNS) stimmulant activity from the glycosides of protopanaxatriol series and CNS-depressant activity from the glycosides of protopanaxadiol series. On the other hand, the author and his co-workers found stimmulating activity on the protein synthesis from both the series of dammalene glycosides with delayed and long-lasting characteristics. This delayed and long-lasting characteristics were also observed in the anti-inflammatory activity of glycosides of protopanaxatriol series on their time course tendency. For the convenience's sake of argument, pluralistic pharmacologic activities of dammalene glycosides, which were observed by many workers at various pharmacologic site, may be classified into two main categories; one is pan-cellular activity and the other is organ specific activity to the certain tissue which is a mass of cells differentiated to a certain direction for their special functions in the body. Based on the data of K. Takaki and those of the authors, following assumption will be probable; Pharmacologic activities of both series of glycosides of protopanaxadiol and protopanaxatriol aglycones may be antagonistic on their tissue-specific activities and analogic on their pan-cellular activities. Therefore, the mixture of these two series of glycosides in an appropriate ratio, as the case of total extract of Korean ginseng, will be probably beneficial to the host by increasing the synthesis of some functional proteins, due to the additive action of pan-cellular activity, and with the disappearance of any significant behavioral symptoms due to the antagonism of tissue specific activity. This fact will probably be the main reason why classical trials of pharmacologists failed in re-discovering the efficacy of Korean ginseng with their behavioral test. 3) The author and his co-workers achieved the synthesis of $C^{14}-labelled\;Panax\;Saponin\;A\;on\;C_{25}-C_{27}\;position\;of\;aglycone$ in the interest of tracer studies in vivo. The method will be applicable to other dammalene glycosides regardless of their chemical structure. 4) The author and his co-workers converted chemically betulafolienetriol, a triterpene component of Betula platyphylla, to the protopanaxadiol, one of genuine aglycone of dammalene glycosides.

  • PDF

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

The Anti-Inflammatory Effect of IH-901 in HT-29 Cells

  • Lee, Seung-Min;Kim, Ki-Nam;Kim, Yu-Ri;Kim, Hye-Won;Shim, Boo-Im;Lee, Seung-Ho;Bae, Hak-Soon;Kim, In-Kyoung;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.254-261
    • /
    • 2007
  • 20-O-($\beta$-D-Glucopyranosyl)-20 (S)-protopanaxadiol (IH-901) is one of the major metabolites of ginsenosides from Panax ginseng, and is suggested that IH-901 has been associated with various pharmacological and physiological activities. In this study, we demonstrate that IH-901 induced anti-inflammation in HT-29 human colon adenocarcinoma cells. Our results showed that IH-901 inhibited cell proliferation of HT-29 in a time- and dose-dependent manner. We also found that IH-901 was significantly decreased expression of iNOS compared with non-treated. We observed effect of IH-901 related with inflammatory genes using by cDNA microarray. We were known that the 34 inflammatory genes such as E2F, CDK6, TNF-$\alpha$, and PKC were down-regulated. Thus, these results suggest that IH-901 may have a potential preventive factor to improving cancer induced by chronic inflammation.