• Title/Summary/Keyword: 2D Array

Search Result 1,094, Processing Time 0.026 seconds

3-D interpolation technique and compressive sensing for 3-D conformal array (3차원 interpolation technoque과 compressive sensing을 이용한 비 균일한 3차원 array의 beam pattern 복구)

  • Kang, K;Seol, K;Cesar, W;Jeong, S;Koh, J
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.106-108
    • /
    • 2017
  • 본 논문에서는 휘어지거나 굴곡진 array인 3차원 conformal array의 beam pattern을 보정하고자 기존의 2차원에서 3차원으로 확장한 interpolation technique과 compressive sensing을 이용하여 3-D uniform rectangular array(3-D URA)에 적용하는 방법을 연구하였다. 시뮬레이션 결과는 compressive sensing이 interpolation technique보다 우수한 특성을 보여준다.

77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module

  • Kim, Sangkil;Rida, Amin;Lakafosis, Vasileios;Nikolaou, Symeon;Tentzeris, Manos M.
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.262-269
    • /
    • 2019
  • This paper introduces a low-cost, high-performance mmWave antenna array module at 77 GHz. Conventional waveguide transitions have been replaced by 3D CPW-microstrip transitions which are much simpler to realize. They are compatible with low-cost substrate fabrication processes, allowing easy integration of ICs in 3D multi-chip modules. An antenna array is designed and implemented using multilayer coupled-fed patch antenna technology. The proposed $16{\times}16$ array antenna has a fractional bandwidth of 8.4% (6.5 GHz) and a 23.6-dBi realized gain at 77 GHz.

Design of Circular Microstrip Patch 2×2 Array Antenna for S-band Applications (S-밴드용 원형 마이크로스트립 패치 2×2 배열 안테나의 설계)

  • Ahn, Yong-Bok;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this paper, we have designed and fabricated microstrip antenna of S-band for the wireless LAN and the ISM. It array $2{\times}2$ circular patch antenna elements at plane instead of conventional rectangular patch antenna elements. It optimized to size calculated of single patch antenna. The radiation elements distance is array $0.24{\lambda}$. The fabricated circular patch antenna decreased 8% of size compared to the conventional rectangular patch antenna. In the E-plane, designed circular microstrip patch $2{\times}2$ array antenna gain is 12.7[dBi], half power beam width is $40^{\circ}$ and in the H-plane, antenna gain is 12.1[dBi], half power beam width is $45^{\circ}$. Bandwidth is 250[MHz] (VSWR < 2).

  • PDF

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

A 94-GHz Phased Array Antenna Using a Log-Periodic Antenna on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A 94-GHz phased array antenna using a log-periodic antenna has been developed on a GaAs substrate. The developed phased array antenna comprises four log-periodic antennas, a phase shifter, and a Wilkinson power divider. This antenna was fabricated using the standard microwave monolithic integrated circuit (MMIC) process including an air bridge for unipolar circuit implementations on the same GaAs substrate. The total chip size of the fabricated phased array antenna is 4.8 mm × 4.5 mm. Measurement results showed that the fabricated phased array antenna had a very wide band performance from 80 GHz to 110 GHz with return loss characteristics better than -10 dB. In the center frequency of 94 GHz, the fabricated phased array antenna showed a return loss of -16 dB and a gain of 4.43 dBi. The developed antenna is expected to be widely applied in many applications at W-band frequency.

A Study on the FDTD method using Periodic Boundary Condition for PBG Performance Analysis (PBG 구조 성능 해석을 위한 주기경계조건의 FDTD 적용연구)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.31-38
    • /
    • 2010
  • It is difficult to design accurately the bandgap of metamaterial depending on metamaterial pattern and array configuration. In this paper, we propose a design method for the wanted bandgap frequency using any metamaterial pattern in 2 dimensional array. Metamaterial structure is consisted of periodic array. Therefore the calculation area in FDTD(finite difference time domain) method can be reduced by applying the periodic boundary condition to 2-D metamaterial array. The method for design and calculation the L and C values by using 2-D is also considered. So it can be designed more accurately and rapidly. For example, we designed metamaterial square pattern array in 5 GHz, and compared with the 1-D metamaterial pattern using analysis method in microstrip line. As a result, we found that the accuracy of this proposed method can be incresed to 14.7%.

  • PDF

Design and Analysis of 45°-Inclined Linearly Polarized Substrate Integrated Waveguide(SIW) Slot Sub-Array Antenna for 35 GHz (45도 선형 편파 발생용 SIW 슬롯 Sub-Array 안테나 설계 및 해석)

  • Kim, Dong-Yeon;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.357-365
    • /
    • 2013
  • The 4 by 4 series slot sub-array antenna is proposed using substrate integrated waveguide(SIW) technology for 35 GHz of Ka band application. The proposed antenna is realized with multi-layered structure for compact size and easy integration features. 4 by 4 radiating slots are arrayed on top PCB with equal spacing and the feeding SIWs are arranged on middle and bottom PCBs for uniform power distribution. The multi-layered antenna is realized using RT/Duroid 5880 that has dielectric constant of 2.2 and the total antenna size is $750.76mm^2$. The individual parts such as radiators and feeding networks are simulated using full-wave simulator CST MWS. Furthermore, the total sub-array antenna also fabricated and measured the electrical performances such as impedance bandwidth under the criteria of -10 dB(490 MHz), maximum gain(18.02 dBi), sidelobe level(SLL)(-11.0 dB), and cross polarization discrimination (XPD)(-20.16 dB).

Design and Characterization of HTS antenna array with sequential rotation array (순차적 순환배열을 이용한 고온초전도 배열 안테나 설계 및 특성해석)

  • Chung, D.C.;Hwang, J.S.;Kim, Y.M.;Choi, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-81
    • /
    • 2006
  • We report the performance of a four-element, 11.67 GHz, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from $YBa_2Cu_3O_{7-x}$ (YBCO) superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at room temperature and at cryogenic temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

  • PDF

Dual Polarized Array Antenna for S/X Band Active Phased Array Radar Application

  • Han, Min-Seok;Kim, Ju-Man;Park, Dae-Sung;Kim, Hyoung-Joo;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A dual-band dual-polarized microstrip antenna array for an advanced multi-function radio function concept (AMRFC) radar application operating at S and X-bands is proposed. Two stacked planar arrays with three different thin substrates (RT/Duroid 5880 substrates with $\varepsilon_r$=2.2 and three different thicknesses of 0.253 mm, 0.508 mm and 0.762 mm) are integrated to provide simultaneous operation at S band (3~3.3 GHz) and X band (9~11 GHz). To allow similar scan ranges for both bands, the S-band elements are selected as perforated patches to enable the placement of the X-band elements within them. Square patches are used as the radiating elements for the X-band. Good agreement exists between the simulated and the measured results. The measured impedance bandwidth (VSWR$\leq$2) of the prototype array reaches 9.5 % and 25 % for the S- and X-bands, respectively. The measured isolation between the two orthogonal polarizations for both bands is better than 15 dB. The measured cross-polarization level is ${\leq}-21$ dB for the S-band and ${\leq}-20$ dB for the X-band.

A Two-Element Circularly-Polarized Antenna Array for UHF-Band RFID Reader Applications

  • Park Joung-Min;Kim Yun-Mi;Ahn Bierng-Chearl;Park Chan-Sik;Cha Eun-Jong
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.36-46
    • /
    • 2006
  • In this paper, we present a two-element circularly-polarized antenna array for UHF-band RFID reader applications. The antenna element in the array is a comer-truncated rectangular patch placed on a thick plastic-foam dielectric. The patch is fed on one of its edges by a microstrip line printed on a separate thin substrate. The array antenna is fed by a microstrip power divider. Parametric studies on the patch are carried out, from which an optimum design of a single antenna element is derived. The element spacing and the feed network of the array are investigated. A commercial electromagnetic software is employed in the analysis and design of the antenna. The designed array is fabricated and tested. Measurements show good performance characteristics of the fabricated antenna: a 11.2-dBi gain, a reflection coefficient of - 14 dB, an axial ratio less than 3 dB over 3-dB beamwidths of 40 and 60 degrees on two principal planes.