• Title/Summary/Keyword: 2D 절삭

Search Result 93, Processing Time 0.027 seconds

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System(II) - for Cutting Fluid Aerosol Prediction in Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(II) - 선삭공정의 절삭유 에어로졸 예측)

  • Chung, E.S.;Hwang, D.C.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.32-40
    • /
    • 2005
  • This paper presents the analytical approaches to predict cutting fluid aerosol formation characteristics in machining process. The prediction model which is based on the rotary atomization theory analyzes aerosol behaviors in terms of size and concentration. Experiments were tarried out to verify the aerosol formation prediction model under various operational conditions. The experimental results which are obtained by Dual-PDA measurement show resonable agreement with prediction results of aerosol concentration. This study can be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process in view of environmental consciousness.

  • PDF

Generation of Cutting Layers and Tool Selection for 3D Pocket Machining (3차원 포켓가공을 위한 절삭층 형성 및 공구선정)

  • 경영민;조규갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.101-110
    • /
    • 1998
  • In process planning for 3D pocket machining, the critical issues for the optimal process planning are the generation of cutting layers and the tool selection for each cutting layers as well as the other factors such as the determination of machining types, tool path, etc. This paper describes the optimal tool selection on a single cutting layer for 2D pocket machining, the generation of cutting layers for 3D pocket machining, the determination of the thickness of each cutting layers, the determination of the tool combinations for each cutting layers and also the development of an algorithm for determining the machining sequence which reduces the number of tool exchanges, which are based on the backward approach. The branch and bound method is applied to select the optimal tools for each cutting layer, and an algorithmic procedure is developed to determine the machining sequence consisting of the pairs of the cutting layers and cutting tools to be used in the same operation.

  • PDF

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

High-precision Micro-machining using Vibration Cutting (진동절삭을 이용한 고정도 미세가공)

  • Son, Seong-Min;Lim, Han-Seok;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.72-77
    • /
    • 1999
  • This paper presents 2-dimensional vibration cutting increases dynamic stiffness of tool support and improves the quality of machined surface in micro-machining. 2-dimensional vibration cutting is generated by two piezo actuators arranged orthogonally. A sine-type voltage is input to one actuator and a phase-shifted sine-type voltage is input the other. Then the vibration device actuates the tool in a 2-D elliptical motion with pulsed cutting force. It is a characteristic of 2-D vibration cutting that some negative thrust force occurs as the direction of friction on a tool rake surface is reversed. It helps not only chip flow smoothly and continuously but also cutting force be reduced. The quality of machined surface by 2-D vibration cutting depends on such parameters as vibration amplitude, frequency, cutting speed, depth of cut, etc. Compared to conventional cutting through tool path simulation and experiments under several conditions, the 2-D vibration cutting is verified to bring forth a great decrease of cutting forces, much better surface roughness and moreover much less burr.

  • PDF

Marginal and internal discrepancy of 3-unit fixed dental prostheses fabricated by subtractive and additive manufacturing (절삭 및 적층 가공법으로 제작된 3본 고정성 국소의치의 변연 및 내면 적합도에 관한 연구)

  • Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • Purpose: This study was to evaluate marginal and internal discrepancy of 3-unit fixed dental prostheses (FDP) fabricated by subtractive manufacturing and additive manufacturing. Materials and methods: 3-unit bridge abutments without the maxillary left second premolar were prepared (reference model) and the reference model scan data was obtained using an intraoral scanner. 3-unit fixed dental prostheses were fabricated in the following three ways: Milled 3-unit FDP (MIL), digital light processing (DLP) 3D printed 3-unit FDP (D3P), stereolithography apparatus (SLA) 3D printed 3-unit FDP (S3P). To evaluate the marginal/internal discrepancy and precision of the prosthesis, scan data were superimposed by the triple-scan protocol and the combinations calculator, respectively. Quantitative and qualitative analysis was performed using root mean square (RMS) value and color difference map in 3D analysis program (Geomagic control X). Statistical analysis was performed using the Kruskal-Wallis test (α=.05), MannWhitney U test and Bonferroni correction (α=.05/3=.017). Results: The marginal discrepancy of S3P group was superior to MIL and D3P groups, and MIL and D3P groups were similar. The D3P and S3P groups showed better internal discrepancy than the MIL group, and there was no significant difference between the D3P and S3P groups. The precision was excellent in the order of MIL, S3P, and D3P groups. Conclusion: Within the limitation of this study, the 3-unit fixed dental prostheses fabricated by additive manufacturing showed better marginal and internal discrepancy than the those of fabricated by subtractive manufacturing, but the precision was poor.

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

Measurement of Temperature Field in the Primary Deformation Zone in 2-D Orthogonal Machining Using IR (Infra-Red) Thermography (순수 2 차원 절삭에서 적외선 열화상을 이용한 주변형 영역의 온도 분포 측정)

  • Kim, Myung-Jae;Jung, Hyun-Gi;Hwang, Ji-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.853-862
    • /
    • 2012
  • The present study develops a method for directly measuring the temperature field in the primary deformation zone with a high spatial resolution during 2-D orthogonal machining. This is enabled by the use of a high-speed, charge-coupled device (CCD) based, infra-red (IR) imaging system which allows characteristics of the temperature field such as the location and magnitude of the highest temperature and temperature gradient in the primary deformation zone to be identified. Based on these data, the relation between the machining temperature and the cutting conditions is investigated.

Design and Analysis of Cutting Chip Collecting Apparatus for 5 Head Router Machine (압축공기 토출방식 절삭칩 회수장치 설계 및 해석)

  • 김현섭;이택민;김동수;최병오;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1133-1136
    • /
    • 2004
  • The structures of airplane consist of sheet metal part, heavy machined part, and so on, which generate enormous amounts of cutting chip when these parts are machined. The cutting chip detoriorates the part quality and production efficiency. Therefore, cutting chip collecting apparatus is necessary for better quality and efficiency. In this study, blowing type cutting chip collecting apparatus was newly proposed and the concept design of the apparatus was examined through numerical analysis. Computations using the mass-averaged implicit 2D Navier-Stokes equations are applied to predict the nozzle flow field. The standard k-e turbulent model are employed to close the governing equations. Consequently, this study shows that the suggested blowing type cutting chip collecting apparatus can be alternative to existing expensive chip collecting apparatus.

  • PDF

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF