Browse > Article
http://dx.doi.org/10.4047/jkap.2020.58.1.7

Marginal and internal discrepancy of 3-unit fixed dental prostheses fabricated by subtractive and additive manufacturing  

Choi, Jae-Won (Department of Prosthodontics, School of Dentistry, Pusan National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.58, no.1, 2020 , pp. 7-13 More about this Journal
Abstract
Purpose: This study was to evaluate marginal and internal discrepancy of 3-unit fixed dental prostheses (FDP) fabricated by subtractive manufacturing and additive manufacturing. Materials and methods: 3-unit bridge abutments without the maxillary left second premolar were prepared (reference model) and the reference model scan data was obtained using an intraoral scanner. 3-unit fixed dental prostheses were fabricated in the following three ways: Milled 3-unit FDP (MIL), digital light processing (DLP) 3D printed 3-unit FDP (D3P), stereolithography apparatus (SLA) 3D printed 3-unit FDP (S3P). To evaluate the marginal/internal discrepancy and precision of the prosthesis, scan data were superimposed by the triple-scan protocol and the combinations calculator, respectively. Quantitative and qualitative analysis was performed using root mean square (RMS) value and color difference map in 3D analysis program (Geomagic control X). Statistical analysis was performed using the Kruskal-Wallis test (α=.05), MannWhitney U test and Bonferroni correction (α=.05/3=.017). Results: The marginal discrepancy of S3P group was superior to MIL and D3P groups, and MIL and D3P groups were similar. The D3P and S3P groups showed better internal discrepancy than the MIL group, and there was no significant difference between the D3P and S3P groups. The precision was excellent in the order of MIL, S3P, and D3P groups. Conclusion: Within the limitation of this study, the 3-unit fixed dental prostheses fabricated by additive manufacturing showed better marginal and internal discrepancy than the those of fabricated by subtractive manufacturing, but the precision was poor.
Keywords
Additive manufacturing; Internal discrepancy; Marginal discrepancy; Precision; Subtractive manufacturing;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Kang SY, Park JH, Kim JH, Kim WC. Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique. J Adv Prosthodont 2018;10:354-60.   DOI
2 Rakhshan V. Marginal integrity of provisional resin restoration materials: A review of the literature. Saudi J Dent Res 2015;6:33-40.   DOI
3 Tom T, Uthappa M, Sunny K, Begum F, Nautiyal M, Tamore S. Provisional restorations: An overview of materials used. J Adv Clin Res Insights 2016;3:212-4.   DOI
4 Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont 2017;9:265-70.   DOI
5 Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-7.   DOI
6 Abdullah AO, Tsitrou EA, Pollington S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci 2016;24:258-63.   DOI
7 Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204:505-11.   DOI
8 van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12.   DOI
9 Kim CM, Kim SR, Kim JH, Kim HY, Kim WC. Trueness of milled prostheses according to number of ball-end mill burs. J Prosthet Dent 2016;115:624-9.   DOI
10 Torabi K, Farjood E, Hamedani S. Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent (Shiraz) 2015;16:1-9.
11 Hoang LN, Thompson GA, Cho SH, Berzins DW, Ahn KW. Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: an in vitro study. J Prosthet Dent 2015;113:398-404.   DOI
12 Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont 2012;21:641-4.   DOI
13 Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol 2006;29:317-35.   DOI
14 Ozcelik TB, Yilmaz B, Seker E, Shah K. Marginal adaptation of provisional CAD/CAM restorations fabricated using various simulated digital cement space settings. Int J Oral Maxillofac Implants 2018;33:1064-9.   DOI
15 Christensen GJ. The state of fixed prosthodontic impressions: room for improvement. J Am Dent Assoc 2005;136:343-6.   DOI
16 Burns DR1, Beck DA, Nelson SK; Committee on research in fixed prosthodontics of the academy of fixed prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the committee on research in fixed prosthodontics of the academy of fixed prosthodontics. J Prosthet Dent 2003;90:474-97.   DOI
17 Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent 2019;121:590-7.   DOI
18 Alharbi N, Alharbi S, Cuijpers VMJI, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2018;62:218-26.   DOI
19 Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent 2017;118:208-15.   DOI
20 Huh JB, Kim US, Kim HY, Kim JE, Lee JY, Kim YS, Jeon YC, Shin SW. Marginal and internal fitness of three-unit zirconia cores fabricated using several CAD/CAM systems. J Korean Acad Prosthodont 2011;49:236-44.   DOI
21 Homsy FR, Ozcan M, Khoury M, Majzoub ZAK. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. J Prosthet Dent 2018;119:783-90.   DOI
22 Son K, Lee S, Kang SH, Park J, Lee KB, Jeon M, Yun BJ. A comparison study of marginal and internal fit assessment methods for fixed dental prostheses. J Clin Med 2019;8:785.   DOI
23 Ahn JJ, Huh JB, Choi JW. In vitro evaluation of the wear resistance of provisional resin materials fabricated by different methods. J Korean Acad Prosthodont 2019;57:110-7.   DOI
24 Cho WT, Choi JW. Comparison analysis of fracture load and flexural strength of provisional restorative resins fabricated by different methods. J Korean Acad Prosthodont 2019;57:225-31.   DOI
25 Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6.   DOI
26 Sachs C, Groesser J, Stadelmann M, Schweiger J, Erdelt K, Beuer F. Full-arch prostheses from translucent zirconia: accuracy of fit. Dent Mater 2014;30:817-23.   DOI
27 Molin M, Karlsson S. The fit of gold inlays and three ceramic inlay systems. A clinical and in vitro study. Acta Odontol Scand 1993;51:201-6.   DOI
28 Colpani JT, Borba M, Della Bona A. Evaluation of marginal and internal fit of ceramic crown copings. Dent Mater 2013;29:174-80.   DOI
29 Praca L, Pekam FC, Rego RO, Radermacher K, Wolfart S, Marotti J. Accuracy of single crowns fabricated from ultrasound digital impressions. Dent Mater 2018;34:e280-8.   DOI
30 Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns-validation of the silicone replica method. J Oral Rehabil 2008;35:116-22.   DOI
31 Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016;60:72-84.   DOI
32 Park JY, Bae SY, Lee JJ, Kim JH, Kim HY, Kim WC. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis. J Adv Prosthodont 2017;9:159-69.   DOI
33 Schaefer O, Decker M, Wittstock F, Kuepper H, Guentsch A. Impact of digital impression techniques on the adaption of ceramic partial crowns in vitro. J Dent 2014;42:677-83.   DOI
34 Dahl BE, Ronold HJ, Dahl JE. Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol. J Prosthet Dent 2017;117:400-4.   DOI
35 De Souz a AF, Diniz AE, Rodrigues AR, Coelho RT. Investigating the cutting phenomena in free-form milling using a ball-end cutting tool for die and mold manufacturing. Int J Adv Manuf Technol 2014;71:1565-77.   DOI
36 Lee S. Prospect for 3D printing technology in medical, dental, and pediatric dental field. J Korean Acad Pediatr Dent 2016;43:93-108.
37 Dikova T, Dzhendov DA, Ivanov D, Bliznakova K. Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes. Arch Mater Sci Eng 2018;94:65-75.
38 Nejatidanesh F, Lotfi HR, Savabi O. Marginal accuracy of interim restorations fabricated from four interim autopolymerizing resins. J Prosthet Dent 2006;95:364-7.   DOI
39 Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent 2014;112:649-57.   DOI
40 Jeong SJ, Cho HW, Jung JH, Kim JM, Kim YL. Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods. J Korean Acad Prosthodont 2019;57:211-8.   DOI
41 Kim DY, Jeon JH, Kim JH, Kim HY, Kim WC. Reproducibility of different arrangement of resin copings by dental microstereolithography: Evaluating the marginal discrepancy of resin copings. J Prosthet Dent 2017;117:260-5.   DOI
42 Berger U. Aspects of accuracy and precision in the additive manufacturing of plastic gears. Virtual Phys Prototype 2015;10:49-57.   DOI
43 Osman RB, Alharbi N, Wismeijer D. Build angle: Does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int J Prosthodont 2017;30:182-8.   DOI
44 Alharbi N, Osman RB, Wismeijer D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Int J Prosthodont 2016;29:503-10.   DOI
45 Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont 2017;26:581-6.   DOI