• Title/Summary/Keyword: 2D/MALDI-TOF

Search Result 103, Processing Time 0.023 seconds

Protein Profile in Corpus Luteum during Pregnancy in Korean Native Cows

  • Chung, H.J.;Kim, K.W.;Han, D.W.;Lee, H.C.;Yang, B.C.;Chung, H.K.;Shim, M.R.;Choi, M.S.;Jo, E.B.;Jo, Y.M.;Oh, M.Y.;Jo, S.J.;Hong, S.K.;Park, J.K.;Chang, W.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1540-1545
    • /
    • 2012
  • Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism, but the profile of proteins associated with progesterone synthesis in cyclic and pregnant corpus luteum (CL) is not well-known in cattle. In Experiment 1, plasma progesterone level was monitored in cyclic cows (n = 5) and pregnant cows (n = 6; until d-90). A significant decline in the plasma progesterone level occurred at d-19 of cyclic cows. Progesterone level in abbatoir-derived luteal tissues was also determined at d 1 to 5, 6 to 13 and 14 to 20 of cyclic cows, and d-60 and -90 of pregnant cows (n = 5 each). Progesterone level in d-60 CL was not different from those in d 6 to 13 CL and d-90 CL, although the difference between d 6 to 13 and d-90 was significant. In Experiment 2, protein expression pattern in CL at d-90 (n = 4) was compared with that in CL of cyclic cows at d 6 to 13 (n = 5). Significant changes in the level of protein expression were detected in 32 protein spots by two-dimensional polyacrylamide gel electrophoresis (2-DE), and 23 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Six proteins were found only in pregnant CL, while the other 17 proteins were found only in cyclic CL. Among the above 6 proteins, vimentin which is involved in the regulation of post-implantation development was included. Thus, the protein expression pattern in CL was disorientated from cyclic luteal phase to mid pregnancy, and alterations in specific CL protein expression may contribute to the maintenance of pregnancy in Korean native cows.

Metabolic Characteristic of the Liver of Dairy Cows during Ketosis Based on Comparative Proteomics

  • Xu, Chuang;Wang, Zhe;Liu, Guowen;Li, Xiaobing;Xie, Guanghong;Xia, Cheng;Zhang, Hong You
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1003-1010
    • /
    • 2008
  • The objective of the present study was to identify differences in the expression levels of liver proteins between healthy and ketotic cows, establish a liver metabolic interrelationship of ketosis and elucidate the metabolic characteristics of the liver during ketosis. Liver samples from 8 healthy multiparous Hostein cows and 8 ketotic cows were pooled by health status and the proteins were separated by two-dimensional-electrophoresis (2D-E). Statistical analysis of gels was performed using PDQuest software 8.0. The differences in the expression levels of liver proteins (p<0.05) between ketotic and healthy cows were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry. Five enzymes/proteins were identified as being differentially expressed in the livers of ketotic cows: expression of 3-hydroxyacyl-CoA dehydrogenase type-2 (HCDH), acetyl-coenzyme A acetyltransferase 2 (ACAT) and elongation factor Tu (EF-Tu) were down-regulated, whereas that of alpha-enolase and creatine kinase were up-regulated. On the basis of this evidence, it could be presumed that the decreased expression of HCDH, which is caused by high concentrations of acetyl-CoA in hepatic cells, in the livers of ketotic cows, implies reduced fatty acid ??oxidation. The resultant high concentrations of acetyl-CoA and acetoacetyl CoA would depress the level of ACAT and generate more ??hydroxybutyric acid; high concentrations of acetyl-CoA would also accelerate the Krebs Cycle and produce more ATP, which is stored as phosphocreatine, as a consequence of increased expression of creatine kinase. The low expression level of elongation factor Tu in the livers of ketotic cows indicates decreased levels of protein synthesis due to the limited availability of amino acids, because the most glucogenic amino acids sustain the glyconeogenesis pathway; thus increasing the level of alpha-enolase. Decreased protein synthesis also promotes the conversion of amino acids to oxaloacetate, which drives the Krebs Cycle under conditions of high levels of acetyl-CoA. It is concluded that the livers of ketotic cows possess high concentrations of acetyl-CoA, which through negative feedback inhibited fatty acid oxidation; show decreased fatty acid oxidation, ketogenesis and protein synthesis; and increased gluconeogenesis and energy production.

Proteomic analysis of Korean ginseng(Panax ginseng C. A. Meyer) following exposure to salt stress

  • Kim, Sun-Tae;Bae, Dong-Won;Lee, Kyung-Hee;Hwang, Jung-Eun;Bang, Kyong-Hwan;Kim, Young-Chang;Kim, Ok-Tae;Yoo, Nam-Hee;Kang, Kyu-Young;Hyun, Dong-Yun;Lim, Chae-Oh
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • We evaluated the response to salt stress of two different ginseng lines, STG3134 and STG3159, which are sensitive and tolerant, respectively, to salt treatment. Plants were exposed to a 5 dS/m salt solution, and chlorophyll fluorescence was measured. STG3134 ginseng was more sensitive than STG3159 to salt stress. To characterize the cellular response to salt stress in the two different lines, changes in protein expression were investigated using a proteomic approach. Total protein was extracted from detached salt-treated leaves of STG3134 and STG3159 ginseng, and then separated by two-dimensional polyacrylamide gel electrophoresis(2-DE). Approximately 468 protein spots were detected by 2-DE and Coommassie brilliant blue staining. Twenty-two proteins were found to be reproducibly up- or down-regulated in response to salt stress. Among these proteins, twelve were identified using MALDI-TOF MS and ESI-Q-TOF and classified into several functional groups: photosynthesis-related proteins(oxygen-evolving enhancer proteins 1 and 2, rubisco and rubisco activase), detoxification proteins(polyphenol oxidase) and defense proteins($\beta$-1,3-glucanase, ribonuclease-like storage protein, and isoflavone reductase-like protein). The protein levels of ribonuclease-like storage protein, which was highly induced in STG3159 ginseng as compared to STG3134, correlated tightly with mRNA transcript levels, as assessed by reverse-transcription(RT)-PCR. Our results indicate that salinity induces changes in the expression levels of specific proteins in the leaves of ginseng plants. These changes may, in turn, playa role in plant adaptation to saline conditions.

Protein Analysis of Bacillus subtilis MORI 3K-85 with Reference to the Biosynthesis of 1-Deoxynojirimycin (1-Deoxynojirimycin 생산 균주 Bucillus subtilis MORI 3K-85의 단백질 분석)

  • Cho, Yong-Seok;Kang, Kyung-Don;Park, Young-Shik;Lee, Jae-Yeon;Kim, Hyun-Su;Yuk, Won-Jeong;Kamita, Shizuo George;Hwang, Kyo-Yeol;Seong, Su-Il
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.517-522
    • /
    • 2011
  • In our previous study, we isolated and characterized a 1-deoxynojirimycin (DNJ)-producing bacterium, Bacillus subtilis MORI, from chungkookjang, a Korean traditional food. B. subtilis MORI was subjected to ${\gamma}$-irradiation and the resulting bacteria were screened for increased DNJ production. A mutant was identified that produced 7.6 times more DNJ and named B. subtilis MORI 3K-85. In this study, the protein profiles of both strains were compared by one-dimensional and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) under both native and denaturing conditions. The 1-DE native-PAGE and 1-DE SDS-PAGE analyses identified 5 and 7 bands, respectively, that were found at higher concentrations in B. subtilis MORI 3K-85 than in B. subtilis MORI. Similarly, 2-DE analyses identified 20 protein spots which were found at higher concentrations in B. subtilis MORI 3K-85. The peptide mass profiles of these 20 proteins were analyzed by MALDI-TOF and compared with peptide sequences of B. subtilis and B. amyloliquefaciens in the MASCOT database. This screening suggested that three dehydrogenases, an aldolase, a synthetase, an isomerase, a reductase, and a peroxidase are elevated in B. subtilis MORI 3K-85. Based on this data, one or more of the elevated 8 enzymes might be related to the DNJ biosynthetic pathway.

Cloning, Over-expression, and Characterization of YjgA, a Novel ppGpp-binding Protein

  • Gnanasekaran, Gopalsamy;Pan, SangO;Jung, Wontae;Jeong, Kwangjoon;Jeong, Jae-Ho;Rhee, Joon Haeng;Choy, Hyon E.;Jung, Che-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2419-2424
    • /
    • 2013
  • Guanosine-5'-diphosphate 3'-diphosphate (ppGpp) serves as alarmone in bacterial stringent responses. In this study, an affinity column was constructed by immobilizing ppGpp to NHS-Sepharose for isolating ppGpp-binding proteins. A novel ppGpp-binding protein, YjgA, was isolated and characterized by MALDI-TOF MS (matrix-assisted laser desorption ionization-time-of-flight mass spectrometry) coupled with two-dimensional gel electrophoresis. YjgA and truncated forms of YjgA were cloned and over-expressed in BL21 (DE3). The binding affinity of YjgA to ppGpp was determined by equilibrium dialysis. The interaction of YjgA with ppGpp was very specific, considering that the dissociation constant of YjgA with ppGpp was measured as $5.2{\pm}2.0{\mu}M$, while the affinities to GTP and GDP were about 60 and 30 times weaker than ppGpp. Expression of yjgA gene in Escherichia coli K-12 MG1655 was examined by reverse transcription polymerase chain reaction (RT-PCR). RT-PCR results revealed that yjgA was expressed from early to late stationary phase. The yjgA deletion mutant exhibited decreased cell number at stationary phase compared to parent strain and the over-expression of YjgA increased the cell number. These results suggested that YjgA might stimulate cell division under stationary phase. In most prokaryotic genome, about half of the protein candidates are hypothetical, that are expected to be expressed but there is no experimental report on their functions. The approach utilized in this study may serve as an effective mean to probe the functions of hypothetical proteins.

Intestinal Immune Modulating Polysaccharides of Atractylodes lancea DC. Rhizomes

  • Yu, Kwang-Won
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2000.05a
    • /
    • pp.1-3
    • /
    • 2000
  • A kind of traditional herbal prescription, Sip-Jeon-Dae-Bo-Tang (TJ-48), has been reported to improve the general condition of cancer patients receiving chemotherapy and /or radiation therapy, and to accelerate hematopoietic recovery from bone marrow injury by mitomycin C. In the present studies, we found that hot-water extract from Atractylodes lancea DC. rhizomes contributed mainly to intestinal immune modulating activity of TJ-48 on Peyer's patch cells mediated-hematopoietic response. After the fractionation, ALR-5 II a-1-1, 5 II b-2-2 and 5 II c-3-1 were further purified from crude polysaccharide fraction. Chemical analyses of each fraction indicated that ALR-5 II a-1-1 mainly contained arabinogalactan fraction whereas ALR-5 II b-2-2 and 5 II c-3-1 mostly comprised pectic polysaccharide fractions as the active polysaccharide ingredients. In order to analyze the essential structure of the activity, ALR-5 II a-1-1 was treated by sequential enzymatic digestion using exo-${\alpha}$-L-arabinofuranosidase and exo-${\beta}$-D-(1\longrightarrow3)-galactanase. Based upon the results of chemical and MALDI-TOF-MS analyses and activity on the digested fractions, the galactosyl side chains consisting of 6-linked Galf and Galp over tetrasaccharide in ALR-5 II a-1-1 might be responsible for the potent intestinal immune modulating activity. To characterize moiety of ALR-5 II c-3-1 for the expression of activity, endo-${\alpha}$-D-(1\longrightarrow4)-polygal acturonase (GL-PGase) purified from dried leaves of Panax ginseng digested ALR-5 II c-3-1. The results of structural analyses and activity on the digested fractions showed that PG-2, which structurally resembles to rhamnogalacturonan II (RG II), and PG-3 (galacturono-oligosaccharides) contained potent intestinal immune modulating activity. Further purification of the other acidic fraction (ALR-5 II b-2-2) indicated that ALR-5 II b-2-2Bb showed that the most potent activity. ALR-5 II b-2-2Bb also contained the unusual component sugars characteristics in RG- II as well as PG-2 derived from ALR-5 II c-3-1, but it could not be digested with GL-PGase. The present studies of relationship between structures and intestinal immune modulating activity of the active polysaccharides purified from A. lancea DC. rhizomes suggested that neutral galactosyl chains consisting mainly of (1\longrightarrow6)-linked Galf and Galp, and RG- II -like moiety with unique component sugars, such as 2-Me-Xyl, 2-Me-Fuc, Api, AceA, Kdo and Dha should play an important role in the potent intestinal immune modulating action of A. lancea DC. rhizomes.

  • PDF

Identification of Bovine Pregnancy-Specific Whey Proteins using Two-Dimensional Gel Electrophoresis

  • Han, Rong-Xun;Choi, Su-Min;Kim, Myung-Youn;Quan, Yan Shi;Kim, Baek-Chul;Diao, Yun Fei;Koqani, Reza;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • The early diagnosis of bovine pregnancy is an essential component of successful reproductive planning on farms, because lack of bovine pregnancy over the long term results in reproductive failure and low milk yield-the latter of which is a special concern on dairy farms. This study was designed to identify early pregnancy-specific whey proteins in bovine, by comparing milk samples collected from cattle during pregnancy (Days 30 and 50) and from non-pregnant cattle. In this study, differentially expressed proteins in five pregnant and five non-pregnant Holstein dairy cattle were investigated and compared, using proteomics analysis. The first dimension was applied to a pH $3.0{\sim}10.0$ strip, by loading a 2-mg milk protein sample. After the second-dimension separation was performed, the gels were stained with colloidal Coomassie brilliant blue. The stained gels were scanned and the images were analyzed, to detect variations in protein spots between non-pregnant and pregnant cattle milk protein spots, using ImageMaster, this was followed by analysis with MALDI TOF-MS. Analysis of the 2-DE gel image resulted in a total of approximately $500{\sim}600$ protein spots, of which 12 spots were differentially expressed, six spots were up-regulated, and four spots were down-regulated; two spots were identified as pregnancy-specific proteins. These proteins were identified as lactoferrin, NA-DH dehydrogenase subunit 2, albumin, serum albumin precursor and transferrin. Our results via 2-D PAGE analysis revealed composite profiles of several milk proteins related to early bovine pregnancy, implying the possible use of these milk proteins in the early detection of bovine pregnancy.

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

Comparative Proteomic Analysis of Yak Follicular Fluid during Estrus

  • Guo, Xian;Pei, Jie;Ding, Xuezhi;Chu, Min;Bao, Pengjia;Wu, Xiaoyun;Liang, Chunnian;Yan, Ping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1239-1246
    • /
    • 2016
  • The breeding of yaks is highly seasonal, there are many crucial proteins involved in the reproduction control program, especially in follicular development. In order to isolate differential proteins between mature and immature follicular fluid (FF) of yak, the FF from yak follicles with different sizes were sampled respectively, and two-dimensional gel electrophoresis (2-DE) of the proteins was carried out. After silver staining, the Image Master 2D platinum software was used for protein analysis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was performed for differential protein identification. The expression level of transferrin and enolase superfamily member 1 (ENOSF1) was determined by Western blotting for verification analysis. The results showed that 2-DE obtained an electrophoresis map of proteins from mature and immature yak FF with high resolution and repeatability. A comparison of protein profiles identified 12 differently expressed proteins, out of which 10 of them were upregulated while 2 were downregulated. Western blotting showed that the expression of transferrin and ENOSF1 was enhanced with follicular development. Both the obtained protein profiles and the differently expressed proteins identified in this study provided experimental data related to follicular development during yak breeding seasons. This study also laid the foundation for understanding the microenvironment during oocyte development.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.