Browse > Article
http://dx.doi.org/10.5713/ajas.2008.70392

Metabolic Characteristic of the Liver of Dairy Cows during Ketosis Based on Comparative Proteomics  

Xu, Chuang (Department of Clinical Veterinary Medicine, Animal Technology and Veterinary College JiLin University)
Wang, Zhe (Department of Clinical Veterinary Medicine, Animal Technology and Veterinary College JiLin University)
Liu, Guowen (Department of Clinical Veterinary Medicine, Animal Technology and Veterinary College JiLin University)
Li, Xiaobing (Department of Clinical Veterinary Medicine, Animal Technology and Veterinary College JiLin University)
Xie, Guanghong (Department of Clinical Veterinary Medicine, Animal Technology and Veterinary College JiLin University)
Xia, Cheng (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Hei long jiang August First Land Reclamation University)
Zhang, Hong You (Department of Clinical Veterinary Medicine, Animal Science and Technology College, Hei long jiang August First Land Reclamation University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.7, 2008 , pp. 1003-1010 More about this Journal
Abstract
The objective of the present study was to identify differences in the expression levels of liver proteins between healthy and ketotic cows, establish a liver metabolic interrelationship of ketosis and elucidate the metabolic characteristics of the liver during ketosis. Liver samples from 8 healthy multiparous Hostein cows and 8 ketotic cows were pooled by health status and the proteins were separated by two-dimensional-electrophoresis (2D-E). Statistical analysis of gels was performed using PDQuest software 8.0. The differences in the expression levels of liver proteins (p<0.05) between ketotic and healthy cows were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-TOF) tandem mass spectrometry. Five enzymes/proteins were identified as being differentially expressed in the livers of ketotic cows: expression of 3-hydroxyacyl-CoA dehydrogenase type-2 (HCDH), acetyl-coenzyme A acetyltransferase 2 (ACAT) and elongation factor Tu (EF-Tu) were down-regulated, whereas that of alpha-enolase and creatine kinase were up-regulated. On the basis of this evidence, it could be presumed that the decreased expression of HCDH, which is caused by high concentrations of acetyl-CoA in hepatic cells, in the livers of ketotic cows, implies reduced fatty acid ??oxidation. The resultant high concentrations of acetyl-CoA and acetoacetyl CoA would depress the level of ACAT and generate more ??hydroxybutyric acid; high concentrations of acetyl-CoA would also accelerate the Krebs Cycle and produce more ATP, which is stored as phosphocreatine, as a consequence of increased expression of creatine kinase. The low expression level of elongation factor Tu in the livers of ketotic cows indicates decreased levels of protein synthesis due to the limited availability of amino acids, because the most glucogenic amino acids sustain the glyconeogenesis pathway; thus increasing the level of alpha-enolase. Decreased protein synthesis also promotes the conversion of amino acids to oxaloacetate, which drives the Krebs Cycle under conditions of high levels of acetyl-CoA. It is concluded that the livers of ketotic cows possess high concentrations of acetyl-CoA, which through negative feedback inhibited fatty acid oxidation; show decreased fatty acid oxidation, ketogenesis and protein synthesis; and increased gluconeogenesis and energy production.
Keywords
Dairy Cow; Ketosis; Liver Metabolic Characteristic; Comparative Proteomics; Metabolic Network;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Lee., H. J., M. A. Khan, W. S. Lee, H. S. Kim, K. S. Ki, S. J. Kang, T. Y. Hur, M. S. Khan and Y. J. Choi. 2008. Growth, blood metabolites, and health of holstein calves fed milk replacer containing different amounts of energy and protein. Asian-Aust. J. Anim. Sci. 21(2):198-203.   과학기술학회마을   DOI
2 Rukkwamsuk, T., T. Wensing and M. J. Geelen. 1999. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows. J. Dairy Sci. 82:500-505.   DOI   ScienceOn
3 Welch, K. D., B. Wen, D. R. Goodlett, E. C. Yi, H. Lee, T. P. Reilly, S. D. Nelson and L. R. Pohl. 2005. Proteomic identification of potential susceptibility factors in drug-induced liver disease. Chemotherapy Research Toxicol 18:924-33.   DOI   ScienceOn
4 Zammit, V. A. 1990. Ketogenesis in the liver of ruminantsadaptations to a challenge. J. Agric. Sci. 115:155-162.   DOI   ScienceOn
5 Jia, X., K. Hollung, M. Therkildsen, K. I. Hildrum and E. Bendixen. 2006. Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosis. Proteomics 6:936-944.   DOI   ScienceOn
6 Verma, M. and S. K. Dutta. 1994. DNA sequences encoding enolase are remarkably conserved from yeast to mammals. Life Sci. 55:893-899.   DOI   ScienceOn
7 Saks, V. A., G. B. Chernousova, D. E. Gukovsky, V. N. Smirnov and E. I. Chazov. 1975. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Eur. J. Biochem. 57:273-290.   DOI   ScienceOn
8 Treberg, J. R., E. L. Crockett and W. R. Driedzic. 2006. Activation of liver carnitine palmitoyltransferase-1 and mitochondrial acetoacetyl-CoA thiolase is associated with elevated ketone body levels in the elasmobranch Squalus acanthias. Physiol and Biochemics Zool. 79:899-908.   DOI   ScienceOn
9 Shevchenko, A., M. Wilm, O. Vorm and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analyt. Chem. 68:850-858.   DOI   ScienceOn
10 Schei, I., H. Volden and L. Bevre. 2005. Effects of energy balance and metabolizable protein level on tissue mobilization and milk performance of dairy cows in early lactation. Liverst. Produc. Sci. 95:35-47.   DOI   ScienceOn
11 Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76:3882-3896.   DOI   ScienceOn
12 Drackley, J. K., T. R. Overton and G. N. Douglas. 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 84:E100-E112.   DOI   ScienceOn
13 Duffield, T. 2000. Subclinical ketosis in lactating dairy cattle. Veterinary Clinics of North America-food Animal Practice 16:231-253.   DOI
14 Drackley, J. K. 1999. Biology of dairy cows during the transition period: the final frontier? J. Dairy Sci. 82:2259-2273.   DOI   ScienceOn
15 Danfaer, A., V. Tetens and N. Agergaard. 1995. Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants. Comparative Biochemics and Biophysiology B Biochemics Molecular Biology 111B:201-210.
16 Duffield, T. F., D. Sandals, K. E. Leslie, K. Lissemore, B. W. McBride, J. H. Lumsden, P. Dick and R. Bagg. 1998. Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J. Dairy Sci. 81:2866-2873.   DOI   ScienceOn
17 Melendez, P., J. P. Goff, C. A. Risco, L. F. Archbald, R. Littell and G. A. Donovan. 2006. Incidence of subclinical ketosis in cows supplemented with a monensin controlled-release capsule in Holstein cattle, Florida, USA. Preventive Veterinary Medicine 73:33-42.   DOI   ScienceOn
18 Fabio, T., D. A. Chiara, A. Simona, D. V. Prisco, L. Luigi, Z. Goffredo, F. Lino and S. Andrea. 2003. Proteins from bovine tissues and biological fluids: Defining a reference electrophoresis map for liver, kidney, muscle, blood and red blood cells. Proteomics 3:440-460.   DOI   ScienceOn
19 Geishauser, T., K. Leslie, J. Tenhag and A. Bashiri. 2000. Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. J. Dairy Sci. 83:296-299.   DOI   ScienceOn
20 Zhang, X., Y. Guo, Y. Song, W. Sun, C. Yu, X. Zhao, H. Wang, H. Jiang, Y. Li, X. Qian, Y. Jiang and F. He. 2006. Proteomic analysis of individual variation in normal livers of human beings using difference gel electrophoresis. Proteomics 6:5260-5268.   DOI   ScienceOn
21 Beresini, M. H., B. J. Sugarman, H. M. Shepard and L. B. Epstein. 1990. Synergistic induction of polypeptides by tumor necrosis factor and interferon-gamma in cells sensitive or resistant to tumor necrosis factor: Assessment by computer based analysis of two-dimensional gels using the PDQUEST system. Electrop. 11:232-241.   DOI   ScienceOn
22 Connolly, J. P., D. Comerci, T. G. Alefantis, A. Walz, M. Quan, R. Chafin, P. Grewal, C. V. Mujer, R. A. Ugalde and V. G. DelVecchio. 2006. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 6:3767-3780.   DOI   ScienceOn
23 Cadorniga-Valino, C., R. R. Grummer, L. E. Armentano, S. S. Donkin and S. J. Bertics. 1997. Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes. J. Dairy Sci. 80:646-656.   DOI   ScienceOn
24 Adachi, N., T. Kusuhara, I. Nonaka and F. Terada. 2006. Effect of close-up dry period protein level on preparturiental nitrogen balance and lactating performance of primigravid and multiparous holstein cows. Asian-Aust. J. Anim. Sci. 19:831-836.   과학기술학회마을   DOI
25 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Chem. 72: 248-254.
26 Chiara, D. A., S. Arena, F. Talamo, L. Ledda, G. Renzone, L. Ferrara and A. Scaloni. 2005. Comparative proteomic analysis of mammalian animal tissues and body fluids: bovine proteome database. J. Chromatography B 815:157-168.
27 Reymond, M. A., J. C. Sanchez, G. J. Hughes, K. Gunther, J. Riese, S. Tortola, M. A. Peinado, T. Kirchner, W. Hohenberger, D. F. Hochstrasser and F. Kockerling. 1997. Standardized characterization of gene expression in human colorectal epithelium by two-dimensional electrophoresis. Electrop. 18:2842-2848.   DOI   ScienceOn
28 Mutlu, S. and B. Abdullah. 1998. The clinical-chemical parameters, serum lipoproteins and fatty infiltration of the liver in Ketotic Cows. Turkish J. Vet. Anim. Sci. 22:443-447.
29 Qin, H., T. Liu, J. L. Yang, X. Huang, B. Liu, X. Song, X. Zhao and Y. Q. Wei. 2006. Analysis of differential protein expression profile between retinoic acid resistant and sensitive acute promyelocytic leukemia cells. Ai Zheng 25:828-832.
30 Marton, M. J., J. L. DeRisi, H. A. Bennett, V. R. Iyer, M. J. Marton, J. L. DeRisi, H. A. Bennett, V. R. Iyer, M. R. Meyer, C. J. Roberts, R. Stoughton, J. Burchard, D. Slade, H. Dai, D. E. Bassett, L. Hartwell, H. P. O. Brown and S. H. Friend. 1998. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Medicine 4:1293-1301.   DOI   ScienceOn
31 Moura, A. A., D. A. Chapman and G. J. Killian. 2006. Proteins of the accessory sex glands associated with the oocytepenetrating capacity of cauda epididymal sperm from holstein bulls of documented fertility. Mol. Reprod. Develop. Abstr.
32 Murondoti, A., R. Jorritsma, A. C. Beynen, T. Wensing and M. J. Geelen. 2004. Unrestricted feed intake during the dry period impairs the postpartum oxidation and synthesis of fatty acids in the liver of dairy cows. J. Dairy Sci. 87:672-679.   DOI   ScienceOn
33 Lockhart, D. J. and E. A. Winzeler. 2000. Genomics, gene expression and DNA arrays. Nature 405:827-836.   DOI   ScienceOn
34 Herdt, T. H. 2000. Ruminant adaptation to negative energy balance-Influences on the etiology of ketosis and fatty liver. Veterinary Clinical North American Food Animal Practice 16:215-230.   DOI
35 Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820-2833.   DOI
36 Grum, D. E., J. K. Drackley, R. S. Younker, D. W. LaCount and J. J. Veenhuizen. 1996. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J. Dairy Sci. 79:1850-1864.   DOI   ScienceOn
37 Gorg, A., W. Postel and S. Gunther. 1988. Two-dimensional electrophoresis: The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrop. 9:531-546.   DOI   ScienceOn
38 Jonas, R. and W. Huth. 1978. Acetyl-CoA acetyltransferase from bovine liver mitochondria. Molecular properties of multiple forms. Biochemics and Biophysics Acta 527:379-390.   DOI   ScienceOn
39 Kronfeld, D. S. 1969. Excess gluconeogenesis and oxaloacetate depletion in bovine ketosis. Nutr. Review 27:131-133.
40 Krebs, H. A. 1966. Bovine ketosis. Vet. Rec. 78:187-192.   DOI   ScienceOn
41 Huth, W., R. Jonas, I. Wunderlich and W. Seubert. 1975. On the mechanism of ketogenesis and its control. Purification, kinetic mechanism and regulation of different forms of mitochondrial acetoacetyl-CoA thiolases from ox liver. Eur. J. Biochem. 59:475-489.   DOI   ScienceOn
42 Ingvartsen, K. L. 2006. Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 126:175-213.   DOI   ScienceOn
43 Hogarth, C. J., J. L. Fitzpatrick, A. M. Nolan, F. J. Young, A. Pitt and P. D. Eckersall. 2004. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 4:2094-2100.   DOI   ScienceOn