Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.8.2419

Cloning, Over-expression, and Characterization of YjgA, a Novel ppGpp-binding Protein  

Gnanasekaran, Gopalsamy (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University)
Pan, SangO (Jeollanamdo Institute of Natural Resources Research (JINR))
Jung, Wontae (Department of Chemistry, Chonnam National University)
Jeong, Kwangjoon (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University)
Jeong, Jae-Ho (Department of Microbiology, Chonnam National University Medical School)
Rhee, Joon Haeng (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University)
Choy, Hyon E. (Department of Microbiology, Chonnam National University Medical School)
Jung, Che-Hun (Department of Molecular Medicine, Clinical Vaccine R&D Center, Chonnam National University)
Publication Information
Abstract
Guanosine-5'-diphosphate 3'-diphosphate (ppGpp) serves as alarmone in bacterial stringent responses. In this study, an affinity column was constructed by immobilizing ppGpp to NHS-Sepharose for isolating ppGpp-binding proteins. A novel ppGpp-binding protein, YjgA, was isolated and characterized by MALDI-TOF MS (matrix-assisted laser desorption ionization-time-of-flight mass spectrometry) coupled with two-dimensional gel electrophoresis. YjgA and truncated forms of YjgA were cloned and over-expressed in BL21 (DE3). The binding affinity of YjgA to ppGpp was determined by equilibrium dialysis. The interaction of YjgA with ppGpp was very specific, considering that the dissociation constant of YjgA with ppGpp was measured as $5.2{\pm}2.0{\mu}M$, while the affinities to GTP and GDP were about 60 and 30 times weaker than ppGpp. Expression of yjgA gene in Escherichia coli K-12 MG1655 was examined by reverse transcription polymerase chain reaction (RT-PCR). RT-PCR results revealed that yjgA was expressed from early to late stationary phase. The yjgA deletion mutant exhibited decreased cell number at stationary phase compared to parent strain and the over-expression of YjgA increased the cell number. These results suggested that YjgA might stimulate cell division under stationary phase. In most prokaryotic genome, about half of the protein candidates are hypothetical, that are expected to be expressed but there is no experimental report on their functions. The approach utilized in this study may serve as an effective mean to probe the functions of hypothetical proteins.
Keywords
YjgA; ppGpp; Stringent responses; Stationary phase; Hypothetical protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, S. Y.; Lee, S. H.; Lee, J.; Nishi, K.; Kim, Y. S.; Jung, C. H.; Kim, J. S. J. Mol. Biol. 2008, 376, 1426-1437.   DOI   ScienceOn
2 Potrykus, K.; Cashel, M. Ann. Rev. Microbiol. 2008, 62, 35-51.   DOI   ScienceOn
3 Potrykus, K.; Murphy, H.; Philippe, N.; Cashel, M. Environ. Microbiol. 2011, 13, 563-575.   DOI   ScienceOn
4 Ryals, J.; Little, R.; Bremer, H. J. Bacteriol. 1982, 151, 1261-1268.
5 Silberbach, M.; Huser, A.; Kalinowski, J.; Puhler, A.; Walter, B.; Kramer, R.; Burkovski, A. J. Biotechnol. 2005, 119, 357-367.   DOI   ScienceOn
6 Song, M.; Kim, H. J.; Kim, E. Y.; Shin, M.; Lee, H. C.; Hong, Y.; Rhee, J. H.; Yoon, H.; Ryu, S.; Lim, S.; Choy, H. E. J. Biol. Chem. 2004, 279, 34183-34190.   DOI   ScienceOn
7 Spedding G. Ribosomes and Protein Synthesis: A Practical Approach; Oxford: IRL Press; 1990.
8 Toulokhonov, I. I.; Shulgina, I.; Hernandez, V. J. J. Biol. Chem. 2001, 276, 1220-1225.   DOI   ScienceOn
9 Vogel, H. J.; Bonner, D. M. J. Biol. Chem. 1956, 218, 97-106.
10 Bougdour, A.; Gottesman, S. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 12896-12901.   DOI   ScienceOn
11 Cashel, M.; Gallant, J. Nature 1969, 221, 838-841.   DOI   ScienceOn
12 Cashel, M.; Gentry, D. R.; Hernandez, V. J.; Vinella, D. In Escherichia coli and Salmonella: Cellular and Molecular Biology; Neidhardt, F. C., Ingraham, J. C., Brooks Low, K., Magasanik, B., Schaechter, M., Umbarger, H. E., Eds.; American Society for Microbiology Press: Washington, DC., 1996; pp 1458-1496.
13 Chang, D. E.; Smalley, D. J.; Conway, T. Molecular Microbiology 2002, 45(2), 289-306.   DOI   ScienceOn
14 Choi, J. W.; Lee, J.; Nishi, K.; Kim, Y. S.; Jung, C. H.; Kim, J. S. J. Mol. Biol. 2008, 377, 258-267.   DOI   ScienceOn
15 Datsenko, K. A.; Wanner, B. L. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 6640-6645.   DOI   ScienceOn
16 Ferullo, D. J.; Lovett, S. T. PLoS Genetics 2008, 4, e1000300.   DOI   ScienceOn
17 Flardh, K.; Axberg, T.; Albertson, N. H.; Kjelleberg, S. J. Bacteriol. 1994, 176, 5949-5957.
18 Gatewood, M. L.; Jones, G. H. J. Bacteriol. 2010, 192, 4275-4280.   DOI   ScienceOn
19 Bhatia, U.; Robison, K.; Gilbert, W. Science 1997, 276, 1724-1725.   DOI   ScienceOn
20 Gentry, D. R.; Hernadez, V. J.; Nguyen, L. H.; Jensen, D. B.; Cashel, M. J. Bacteriol. 1993, 175, 7982-7989.
21 Haseltine, W.; Block, R. Proc. Natl. Acad. Sci. U. S. A. 1973, 70, 1564-1568.   DOI   ScienceOn
22 Janssen, G. M. C.; Maassen, J. A.; Moller, W. In Ribosomes and Protein Synthesis: A Practical Approach; Spedding, G., ed.; IRL Press: Oxford, UK, 1990; pp 51-68.
23 Jensen, O. N.; Podtelejnikov, A. V.; Mann, M. Anal. Chem. 1997, 69, 4741-4750.   DOI   ScienceOn
24 Jiang, M.; Datta, K.; Walker, A.; Strahler, J.; Bagamasbad, P.; Andrews, P. C.; Maddock, J. R. J. Bacteriol. 2006, 188, 6757- 6770.   DOI   ScienceOn
25 Kanjee, U.; Gutsche, I.; Ale xopoulos, E.; Zhao, B.; El Bakkouri, M.; Thibault, G.; Liu, K.; Ramachandran, S.; Snider, J.; Pai, E. F.; Houry, W. A. EMBO J. 2011, 30, 931-944.   DOI   ScienceOn
26 Koonin, E. V.; Galperin, M. Y. Sequence-Evolution-Function: Computational approaches in comparative genomics; Kluwer Academic, Boston, MA, 2003.
27 Ausubel, F. M.; Brent, R.; Kingston, R. E.; Moore, D. D.; Seidman, J. G.; Smith, J. A.; Struhl, K. Current Protocols in Molecular Biology; Chanda, V. B., Ed.; John Wiley and Sons Inc.: Boston, MA, 1998.
28 Vrentas, C. E.; Gaal, T.; Berkmen, M. B.; Rutherford, S. T.; Haugen, S. P.; Vassylyev, D. G.; Ross, W.; Gourse, R. L. J. Mol. Biol. 2008, 377, 551-564.   DOI   ScienceOn
29 Washburn, M. P.; Wolters, D.; Yates, J. R., 3rd. Nat. Biotechnol. 2001, 19, 242-247.   DOI   ScienceOn
30 Karin, L.; Dave, W. U.; Trudy, M. W. Microbiology 2010, 156, 603-608.   DOI   ScienceOn
31 Krohn, M.; Wagner, R. Anal. Biochem. 1995, 225, 188-190.   DOI   ScienceOn
32 Lange, R.; Fischer, D.; Hengge-Aronis, R. J. Bacteriol. 1995, 177, 4676-4680.
33 Maciag, M.; Kochanowska, M.; Lyzen, R.; Wegrzyn, G.; Szalewska- Palasz, A. Plasmid 1995, 63, 61-67.
34 Mitkevich, V. A.; Ermakov, A.; Kulikova, A. A.; Tankov, S.; Shyp, V.; Soosaar, A.; Tenson, T.; Makarov, A. A.; Ehrenberg, M.; Hauryliuk, V. J. Mol. Biol. 2010, 402, 838-846.   DOI   ScienceOn
35 O'Farrell, P. H. J. Biol. Chem. 1975, 250, 4007-4021.
36 Park, H. M.; Park, J. H.; Choi, J. W.; Lee, J.; Kim, B. Y.; Jung, C. H.; Kim, J. S. Acta Crystallogr. D. Biol. Crystallogr. 2012, 68, 920-926.   DOI   ScienceOn