Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.6.517

Protein Analysis of Bacillus subtilis MORI 3K-85 with Reference to the Biosynthesis of 1-Deoxynojirimycin  

Cho, Yong-Seok (Department of Life Science, The University of Suwon)
Kang, Kyung-Don (R&D center for Life Science, Biotopia Co., Ltd.)
Park, Young-Shik (R&D center for Life Science, Biotopia Co., Ltd.)
Lee, Jae-Yeon (R&D center for Life Science, Biotopia Co., Ltd.)
Kim, Hyun-Su (Department of Life Science, The University of Suwon)
Yuk, Won-Jeong (R&D center for Life Science, Biotopia Co., Ltd.)
Kamita, Shizuo George (Department of Entomology, University of California)
Hwang, Kyo-Yeol (R&D center for Life Science, Biotopia Co., Ltd.)
Seong, Su-Il (Department of Life Science, The University of Suwon)
Publication Information
KSBB Journal / v.26, no.6, 2011 , pp. 517-522 More about this Journal
Abstract
In our previous study, we isolated and characterized a 1-deoxynojirimycin (DNJ)-producing bacterium, Bacillus subtilis MORI, from chungkookjang, a Korean traditional food. B. subtilis MORI was subjected to ${\gamma}$-irradiation and the resulting bacteria were screened for increased DNJ production. A mutant was identified that produced 7.6 times more DNJ and named B. subtilis MORI 3K-85. In this study, the protein profiles of both strains were compared by one-dimensional and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) under both native and denaturing conditions. The 1-DE native-PAGE and 1-DE SDS-PAGE analyses identified 5 and 7 bands, respectively, that were found at higher concentrations in B. subtilis MORI 3K-85 than in B. subtilis MORI. Similarly, 2-DE analyses identified 20 protein spots which were found at higher concentrations in B. subtilis MORI 3K-85. The peptide mass profiles of these 20 proteins were analyzed by MALDI-TOF and compared with peptide sequences of B. subtilis and B. amyloliquefaciens in the MASCOT database. This screening suggested that three dehydrogenases, an aldolase, a synthetase, an isomerase, a reductase, and a peroxidase are elevated in B. subtilis MORI 3K-85. Based on this data, one or more of the elevated 8 enzymes might be related to the DNJ biosynthetic pathway.
Keywords
Bacillus subtilis; two-dimensional gelelectrophoresis; 1-deoxynojirimycin; ${\alpha}$-glucosidase inhibitor; proteome;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kang, K.-D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, S. K. Rhee, J. H. Chung, O. Kwon, and S. I. Seong (2011) Identification of the gene involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431-440.   DOI
2 Cho, Y. S. (2011) Studies on 1-deoxynojirimycin biosynthesis genes in Bacillus subtilis MORI. Ph.D. Thesis. University of Suwon, Hwaseong-si, Gyeonggi-do, Korea.
3 Bollag, D. M., M. D. Rozycki, and S. J. Edelstein (1996) Protein Methods: Gel Electrophoresis Under Denaturing Conditions and Gel Electrophoresis Under Nondenaturing Conditions. 2nd ed., pp. 107-172. Wiley-Liss Inc., NY, USA.
4 Berkelman, T. and T. Stenstelt (2002) 2-D Electrophoresis Using Immobilized pH Gradie-nts, Principles and Methods. 2nd ed., pp. 17-93. Amersham Biosciences, Uppsala, Sweden.
5 Hardick, D. J. and D. W. Hutchinson (1993) The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49: 6707-6716.   DOI   ScienceOn
6 Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1992) Glucose is a precursor of 1-deoxynojirimycin and 1-deoxymannonojirimycin in Streptomyces subrutilus. Tetrahedron 48: 6285-6296.   DOI   ScienceOn
7 Shibano, M., Y. Fujimoto, K. Kushino, G. Kusano, and K. Baba (2004) Biosynthesis of 1-deoxynojirimycin in Commelina communis: a difference between the microorganisms and plants. Phytochemstry 65: 2661-2665.   DOI   ScienceOn
8 Clark, L. and N. Horenstein (2010) Biosynthesis of Azasugars. First Southeast Enzyme Conference. April 10. Atlanta, GA, USA.
9 Watson, A. A., G. W. G. Fleet, N. Asano, R. J Molyneux, and R. J. Nash (2001) Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochemistry 56: 265-295.   DOI   ScienceOn
10 Asano, N., R. J. Nash, R. J. Molyneux, and G. W. J. Fleet (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 53: 1645-1680.
11 Schedel, M. (2008) Regioselective Oxidation of Aminosorbitol with Gluconobacter oxydans, Key Reaction in the Industrial 1-Deoxynojirimycin Synthesis, pp. 296-307. In: H.-J. Rehm and G. Reed (eds.), Biotechnology: Biotransformations II, Volume 8b, 2nd ed. Wiley-VCH Verlag GmbH, Weinheim, Germany.
12 Asano, N., K. Oseki, E. Tomioka, H. Kizu, and K. Matsui (1994) N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohyr. Res. 259: 243-255.   DOI   ScienceOn
13 Asano, N., T. Yamashita, K. Yasuda, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, R. J. Nash, H. S. Lee, and K. S. Ryu (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213.   DOI   ScienceOn
14 Yoshikuni, Y. (1988) Inhibition of intestinal ${\alpha}$-glycosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric. Biol. Chem. 52: 121-128.   DOI
15 Gruters, R. A., J. J. Neefjes, M. Tersmette, R. E. Y. D. Goede, A. Tulp, H. G. Huisman, F. Miedema, and H. L. Ploegh (1987) Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74-77.   DOI   ScienceOn
16 Fleet, G. W. J., A. Karpas, R. A. Dwek, L. E. Fellows, A. S. Tyms, S. Petursson, S. K. Namgoong, N. G. Ramsden, P. W. Smith, J. C. Son, F. Wilson, D. R. Witty, G. S. Jacob, and T. W. Rademacher (1988) Inhibition of HIV replication by amino-sugar derivatives. FEBS Lett. 237: 128-132.   DOI
17 Karpas, A., G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K. Namgoong, N. G. Ramsden, G. S. Jacob, and T. W. Rademacher (1988) Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sic. USA 85: 9229-9233.   DOI   ScienceOn
18 Mehta, A., N. Zitzmann, P. M. Rudd, T. M. Block, and R. A. Dwek (1998) ${\alpha}$-Glucosidase inhibitors as potential broad anti-viral agents. FEBS Lett. 430: 17-22.   DOI   ScienceOn
19 Dwek, R. A., T. D. Butters, F. M. Platt, and N. Zitzmann (2002) Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug. Discov. 1: 65-75.   DOI
20 Jacob, J. R., K. Mansfield, J. E. You, B. C. Tennant, and Y. H. Kim (2007) Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J. Microbiol. 45: 431-440.
21 Kim, H. S., J. Y. Lee, K. Y. Hwang, Y. S. Cho, Y. S. Park, K.-D. Kang, and S. I. Seong (2011) Isolation and identification of a Bacillus sp. producing ${\alpha}$-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biotechnol. 39: 49-55.
22 Afarinkia, K. and A. Bahar (2005) Recent advances in the chemistry of azapyranose sugars. Tetrahedron: Asymmetry 16: 1239-1287.   DOI   ScienceOn
23 Cho, Y. S., Y. S. Park, J. Y. Lee, K.-D. Kang, K. Kim, K. Y. Hwang, and S. I. Seong (2008) Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401-1407.   DOI
24 Stein, D. C., L. K. Kopec, R. E. Yasbin, and F. E. Young (1984) Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Appl. Environ. Microbiol. 48: 280-284.
25 Ezure, Y., S. Maruo, K. Miyazaki, and M. Kawamata (1985) Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 49: 1119-1125.   DOI
26 Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1991) The biosynthesis of deoxynojrimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10: 729-730.