• Title/Summary/Keyword: 2D/1D coupling method

Search Result 124, Processing Time 0.027 seconds

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network (광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석)

  • 김명진;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2003
  • In this paper, we modeled the incident beam in order to analyze and evaluate the optical thin film device for wavelength division multiplexing in optical telecommunication network. As applied ray tracing method to the optical path, we were compared the accuracy of coupling efficiency simulated by two modeling methods. In the results of sinulation, ceil modeling method was preferred to annual modeling method in micro-optic device because of accuracy for coupling efficiency and Gaussian intensity distribution. In the results of optimal simulation for optical device using thin film filter, the distance (d1) between optical fiber and GRIN lens, the distance (d2) between GRIN lens and thin film filter and the coupling efficiency were 0.24 mm, 0.25 mm and -0.11 ㏈ respectively. As d2 was displaced at 0.25 mm and d1 was varied in order to evaluate the optimal value, d1 and maximum coupling efficiency were 0.24 mm and -0.35㏈, respectively. Then the results of experiment were corresponded to that of optimal simulation by cell modeling and it was possible to analyze the performance for optical device using thin film filter by the simulation.

The Design of a Wideband 3 dB Quadrature Coupler using N-Section Parallel-Coupled Lines (N단 평행 결합 선로를 이용한 90° 광대역 3 dB 결합기 설계)

  • 조정훈;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.94-100
    • /
    • 2002
  • In this paper, we proposed a 3 dB coupler using N-section parallel-coupled lines and designed a very compact one based on the analysis results. The coupled line has been analyzed by spectral domain method. After we obtain the s-parameters of N-section parallel-coupled lines by using port reduction method 4-port s-parameters are derived. The 3 dB couplers, which were fabricated, are not necessary to implement high impedance lines and tight coupling gaps as Lange Couplers because loose coupling is used. To realize a minimum section, we used the PCB that has high a dielectric constant and a thickness. The experimental results show that it has wide bandwidth of about 42 %(0.5 dB unbalance) from 3.6 GHz to 5.5 GHz and phase difference within 1 degree. Also, The isolation characteristics about 15 dB at its pass-band are obtained.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane (유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Gun-Su;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, the effect of a finite substrate on the mutual coupling of a pair of microstrip patch antennas along the H -plane is investigated. The mutual coupling of a pair of microstrip patch antennas can be reduced using the interference effect due to the phase difference by a variety of routes of the surface wave. In the case of the substrate with $\varepsilon_r$=10 and thickness of 3.2 mm, the mutual coupling is reduced by 4.85 dB on the substrate size with the strong mutual coupling, while the mutual coupling is reduced by 34.28 dB on the substrate size with the weak mutual coupling when the distance between the antenna centers is varied from 0.5 $\lambda_0$ to 1.0 $\lambda_0$. In the case of optimization substrate size, the decreasing rate of the mutual coupling with the increase of the distance between the antenna centers is very large. Good agreements between the image method and full wave simulation results are obtained.

Developing a framework to integrate convolution quadrature time-domain boundary element method and image-based finite element method for 2-D elastodynamics

  • Takahiro Saitoh;Satoshi Toyoda
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.213-227
    • /
    • 2024
  • In this study, a framework for coupling of the convolution quadrature time-domain boundary element method (CQBEM) and image-based finite element method (IMFEM) is presented for 2-D elastic wave propagation. This coupling method has three advantages: 1) the finite element modeling for heterogeneous areas can be performed without difficulties by using digital data for the analysis model, 2) wave propagation in an infinite domain can be calculated with high accuracy by using the CQBEM, and 3) a small time-step size can be used. In general, a small time-step size cannot be used in the classical time-domain boundary element method. However, the CQBEM used in this analysis can address a small time-step size. This makes it possible to couple the CQBEM and image-based FEM which require a small-time step size. In this study, the formulation and validation of the pro-posed method are described and confirmed by solving fundamental elastic wave scattering problems. As a numerical example, elastic wave scattering in inhomogeneous media is demonstrated using the proposed coupling method.

Simulation of compound flooding using TUFLOW's 1D-2D coupling features (TUFLOW의 1-2차원 연계 기능을 활용한 복합 침수 모의)

  • Hwang, Donggyu;Kang, Teauk;Jin, Yongkyu;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.451-460
    • /
    • 2024
  • It is necessary to apply a rational urban flood simulation method to analyze the causes of frequent urban flooding and to develop appropriate countermeasures. Previous studies in Korea have performed flood simulations by inputting the results of manhole overflow from sewer systems and river overflow into two-dimensional flood flow simulation models. It, however, is reasonable to simulate flooding from river and manhole overflows in a complex manner. In this study, we used the 1D-2D coupling functionality of the TUFLOW module, which is a part of XP-SWMM, to simulate the compound flooding of rivers and urban areas. That method was applied to the lower basin of the Naengcheon River in Pohang City, Gyeongsangbuk-do, where both inland flooding and river overflow coincided due to Typhoon Hinnamnor on September 5 and 6, 2022, to verify its applicability.

A Design of the Dual Directional Coupler with Unequal Coupling Value (비대칭 결합도를 갖는 이중 방향성 결합기 설계)

  • Kim, Chul-Soo;Park, Jun-Seok;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.1-7
    • /
    • 1999
  • The demands for the various type of directional coupler, which is for the sampling of the signal levels in mobile communication baseband or transceiver systems, are growing. The proposed dual directional coupler, which has three parallel coupled transmission lines, can provide the dual coupling and good isolation characteristics between the coupling ports. In this paper, the novel analysis method and the design equation of even and odd mode for the dual directional coupler, which is employing the asymmetrically coupled transmission lines, are proposed. Using the proposed method, the dual directional coupler for PCS system has been designed and fabricated. We obtained the desired coupling value and the high directivity of 40dB. Measured results show the validity of this design method.

  • PDF

A Design for Mutual Coupling Suppression between Elements in Planar Array Antenna (평면 배열 안테나의 소자간 상호 결합 억압 설계)

  • Min Kyeong-Sik;Kim Dong-Jin;Park Chul-Keun;Moon Young-Min;Kim Young-Eil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.803-809
    • /
    • 2005
  • This paper presents a novel method of mutual coupling suppression between antenna elements for performance improvement in planar array antenna system. Two miniature patch antenna elements satisfied IEEE 802.1 la($5.75\~5.35\;GHz,\;5.75\~5.85\;GHz$) are used for this research, they are arrayed by half wave length interval. It is observed about -20 dB mutual coupling between each antenna element at center frequency. To suppress mutual coupling, the arrayed antennas with a reversed 'U' structure are observed below -30 dB mutual coupling at IEEE 802.1la band.

High Directivity Microstrip Directional Coupler using Interdigital Capacitors (인터디지털 커패시터를 이용한 높은 지향성을 갖는 마이크로스트립 방향성 결합기)

  • Dae-Hyun Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.10-16
    • /
    • 2024
  • Microstrip directional couplers using microstrip lines do not have good directivity characteristics because the dielectric constant of the substrate is different from that of air. To solve this problem, a compensation capacitor is sometimes attached between the coupling lines to improve directivity. This paper proposes a directional coupler with high directivity using interdigital capacitors implemented with transmission lines instead of lumped capacitors. The directional coupler designed and fabricated using the proposed method showed a coupling factor of 20 dB and a directivity of higher than 30 dB at 2.14 GHz. This directional coupler can be used as two directional couplers because it has two coupling ports and two isolated ports.