• Title/Summary/Keyword: 24 scenarios

Search Result 238, Processing Time 0.028 seconds

Integrated Video Analytics for Drone Captured Video (드론 영상 종합정보처리 및 분석용 시스템 개발)

  • Lim, SongWon;Cho, SungMan;Park, GooMan
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we propose a system for processing and analyzing drone image information which can be applied variously in disasters-security situation. The proposed system stores the images acquired from the drones in the server, and performs image processing and analysis according to various scenarios. According to each mission, deep-learning method is used to construct an image analysis system in the images acquired by the drone. Experiments confirm that it can be applied to traffic volume measurement, suspect and vehicle tracking, survivor identification and maritime missions.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Conceptual design of hybrid electric vertical take-off and landing (eVTOL) aircraft with a liquid hydrogen fuel tank

  • Kim, Jinwook;Kwon, Dohoon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.27-38
    • /
    • 2022
  • Urban air mobility (UAM) has recently attracted lots of attention as a solution to urban centralization and global warming. Electric vertical take-off and landing (eVTOL) is a concept that emerges as one of the promising and clean technologies for UAM. There are two difficult challenges for eVTOL aircraft to solve. One is how to improve the weight efficiency of aircraft, and the other is how to complete long-range missions for UAM's flight scenarios. To approach these challenges, we propose a consolidated concept design of battery-fuel cell hybrid tiltrotor aircraft with a liquid hydrogen (LH2) fuel tank. The efficiency of a battery-fuel cell hybrid powertrain system on the designed eVTOL aircraft is compared to that of a battery-only powertrain system. This paper shows how much payload can increase and the flight scenario can be improved by hybridizing the battery and fuel cell and presenting a detailed concept of a cryogenic storage tank for LH2.

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

Enhancing Object Recognition in the Defense Sector: A Research Study on Partially Obscured Objects (국방 분야에서 일부 노출된 물체 인식 향상에 대한 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.77-82
    • /
    • 2024
  • Recent research has seen significant improvements in various object detection and classification models overall. However, the study of object detection and classification in situations where objects are partially obscured remains an intriguing research topic. Particularly in the military domain, unmanned combat systems are often used to detect and classify objects, which are typically partially concealed or camouflaged in military scenarios. In this study, a method is proposed to enhance the classification performance of partially obscured objects. This method involves adding occlusions to specific parts of object images, considering the surrounding environment, and has been shown to improve the classification performance for concealed and obscured objects. Experimental results demonstrate that the proposed method leads to enhanced object classification compared to conventional methods for concealed and obscured objects.

Analysis of Information Distribution Capability of the Army TIGER Corps Multilayer Integrated Communication Network (Army TIGER 군단 다계층 통합 전술통신망의 정보유통량 분석)

  • Junseob Kim;Sangjun Park;Yiju You;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.175-180
    • /
    • 2024
  • Future warfare is evolving with advanced science and technology, introducing a variety of unmanned and manned combat systems. These systems generate and exchange massive amounts of information, challenging current tactical communication systems as a foundation for future communication infrastructure. To analyze the information distribution capability of the Army TIGER corps, this paper examines four scenarios: standalone ground network operation, integrated network operation, load distribution, and error recovery. Utilizing M&S results, we highlight the potential of a multilayer integrated command and control network, incorporating ground, air, and space networks, to enhance the reliability and stability of the overall communication network.

Patient-controlled sedation using remimazolam during third molar extraction: a case report

  • Kyung Nam Park;Myong-Hwan Karm;Kwang-Suk Seo;Hyun Jeong Kim;Seung-Hwa Ryoo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 2024
  • Dental sedation plays a pivotal role in alleviating patient anxiety during various procedures. Remimazolam, a benzodiazepine derivative, stands out for its distinctive attributes, particularly its rapid onset of sedation coupled with a brief duration, making it an invaluable option for dental applications. The patient was admitted for the extraction of impacted third molars via patient-controlled sedation and not only demonstrated stable vital signs but also expressed a high level of satisfaction with the procedure. An in-depth analysis of plasma remimazolam concentrations and changes in the Patient State Index revealed negative correlation patterns, highlighting the inherent potential of remimazolam in achieving effective sedation. This expanded research scope aims to provide a more nuanced understanding of the pharmacological responses to remimazolam in dental sedation scenarios. This case report offers valuable insights into the evolving landscape of dental sedation methodologies and paves the way for a more informed and evidence-based approach to the use of remimazolam in patient-controlled sedation.

Dynamic Threshold Method for Isolation of Worm Hole Attack in Wireless Sensor Networks

  • Surinder Singh;Hardeep Singh Saini
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.119-128
    • /
    • 2024
  • The moveable ad hoc networks are untrustworthy and susceptible to any intrusion because of their wireless interaction approach. Therefore the information from these networks can be stolen very easily just by introducing the attacker nodes in the system. The straight route extent is calculated with the help of hop count metric. For this purpose, routing protocols are planned. From a number of attacks, the wormhole attack is considered to be the hazardous one. This intrusion is commenced with the help of couple attacker nodes. These nodes make a channel by placing some sensor nodes between transmitter and receiver. The accessible system regards the wormhole intrusions in the absence of intermediary sensor nodes amid target. This mechanism is significant for the areas where the route distance amid transmitter and receiver is two hops merely. This mechanism is not suitable for those scenarios where multi hops are presented amid transmitter and receiver. In the projected study, a new technique is implemented for the recognition and separation of attacker sensor nodes from the network. The wormhole intrusions are triggered with the help of these attacker nodes in the network. The projected scheme is utilized in NS2 and it is depicted by the reproduction outcomes that the projected scheme shows better performance in comparison with existing approaches.

User Experience Study on First Aid Training Using Virtual Reality

  • Narmeen Alhyari;Shaidah Jusoh
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.21-31
    • /
    • 2024
  • This study investigates the user experience (UX) of first aid training using virtual reality (VR) technology. As VR continues to be adopted for educational and training purposes, it is important to understand how learners perceive and engage with this medium for developing critical skills, such as first aid. In this study, we developed a VR application called "VR First Aid" that includes training modules on three emergency scenarios: heatstroke, shock, and seizure. The application has both tutorial and hands-on training components. We conducted a UX study by administering a questionnaire to participants. The UX of learning through the VR application was then compared to using a traditional e-book format. Results indicate that participants perceived stronger internal behavior control with the e-book but reported better confirmation, engagement, enjoyment, and intention to use when training with the VR system. Gender differences were also explored, revealing that female participants expressed greater interest in learning through the VR platform compared to male participants. These findings provide insights into the strengths and limitations of VR-based first aid training compared to traditional methods. Implications for the design and deployment of VR training systems are discussed, with a focus on optimizing the learner experience and learning outcomes.

A Strategy for the Generation of Accident Scenarios Using Multi-Component Analysis in Quantitative Risk Assessment (화학공정 위험영향 평가기술에서의 다중요소분석기법을 이용한 사고시나리오 산정에 관한 전략)

  • 김구회;이동언;김용하;안성준;윤인섭
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.24-33
    • /
    • 2001
  • This article proposes a strategy for producing accident scenarios in quantitative risk, which is peformed in process design or operation steps. Present worldwide chemical processes need off-site risk assessment as well as on-site one. Most governments in the world require industrial companies to submit the proper emergency plans through off-site risk assessment. Korea is also preparing for executing Integrated Risk Management System along with PSM and SMS. However.

  • PDF