• Title/Summary/Keyword: 2.4GHZ 대역 응용

Search Result 118, Processing Time 0.028 seconds

Design of a Two-stage Differential cascode Power Amplifier with a Temperature Compensation function of High PAE with 2.4 GHz (2.4GHz 대역폭을 갖는 온도 보상 기능 탑재 고전력부가효율의 2 단 차동 캐스코드 전력증폭기 설계 )

  • Joon Hyung Park;Jisung Jang;Howon Kim;Kang-Yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.6-12
    • /
    • 2024
  • This paper presents a study on a 2.4GHz differential cascode power amplifier(PA) fabricated using a 130nm CMOS process. This PA is designed for wireless power transmission applications and consists of two differential stages with custom-designed balun transformers for single-ended output. Balun transformers are utilized not only for the output stage but also for power match-ing between each stage. Additionally, a bias circuit with temperature compensation capability is added to maintain stable bias voltage in the 2.4GHz frequency band. As a result, it achieves an output power of 21.75 dBm with a power-added efficiency(PAE) of 40.9% at TT/40℃.

Design and Fabrication of Circularly Polarized Antenna for 2.45GHz RFID Application (2.45GHz RFID용 원형편파안테나의 설계 및 제작)

  • Park, Jeong-Heum
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.63-68
    • /
    • 2005
  • In this paper, the single coaxial fed and circularly polarized patch antenna for the RFID system in 2.45GHz ISM band has been fabricated. The simulation by HFSS, electro-magnetic field simulator was executed in order to decide the location of feed which is difficult to be analysed. The simulated result has the same tendency as the measured one in the view of input impedance with the variation of feed location. VSWR of fabricated antenna is low($\leq$1.2) even in comparatively high dielectric loss epoxy substrate(FR4), and this value is enough for the application of RFID reader antenna.

Distance Sensing of an RFID Tag Using RFID Reader Frequency Control (RFID 리더의 주파수 조정을 통한 태그 위치 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.348-355
    • /
    • 2019
  • UHF and microwave RFID systems are widely applied in various fields because they can read a plurality of tag information within a radius of several meters ahead of the RFID reader. However, they cannot detect the position of the tag in applications that recognize only a tag at a specific position. In this study, we propose a new RFID system that can interrogate the tag of a specific location selectively by using the position information of the tag. This can be done by only adjusting the reader's operating frequency. To verify the feasibility of the proposed system, we implemented a 2.4 GHz RFID reader whose frequency can be varied by using a phase-locked loop circuit and a backscattered tag. Experimental results confirm that the tag position can be sensed exactly.

A Performance Study on Radio Wave Interference between IEEE 802.15.4 WPAN and IEEE 802.11 WLAN in 2.4GHz ISM Band (2.4GHz ISM대역 IEEE 802.11b WLAN 과 IEEE 802.15.4 WPAN 상호 전파 간섭에 따른 성능 분석)

  • Chun, Jae-Young;Park, Jin-A;Park, Seung-Keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.504-507
    • /
    • 2005
  • 차세데 홈네트워크 환경하에서는 다양한 데이터 통신 무선기기들이 홈/오피스에서 공존할 것이다. 예를들어 무선랜, 블루투스(Bluetooth), 지그비(Zigbee), 무선 USB, UWB(Ultra Wideband) 등이 함께 주파수를 공유하게 될 것이며, 특히 ISM 대역은 서비스, 산업, 의료용 등으로 다양한 응용이 가느하기 때문에 전파 간섭이 예상된다. 본 논문에서는 IEEE 802.11b 무선랜(WLAN)과 IEEE 802.15.4 저전력 저속 무선팬(WPAN) 무선기기에 대하여 간섭실험을 하였으며 두 무선기기가 상호 공존할 수 있는 공유 조건에 대해 분석하였다. 무선랜(WLAN)과 무선팬(WPAN)의 주파수 대역이 완전히 오버랩된 경우 간섭 레벨과 무선팬의 패킷 전송 횟수를 변화 시켜 상호간의 간섭 영향 저도를 측정하고 상호 무선기기간의 간섭 결과를 바탕으로 상호 무선기기간의 주파수 공유 조건을 제시하고자 한다.

  • PDF

Development of 2.4GHz ISM Band Wireless Communication Platform based on Embedded Linux (임베디드 리눅스 기반의 2.4GHz ISM 밴드 무선 통신 플랫폼 개발)

  • Ohm, Woo-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, we develop a 2.4GHz ISM band wireless communication platform prototype based on embedded linux which support can be u-Hospital service. The developed system is available connecting between ARM920T processor board and FPGA board and linking IEEE 802.11b PHY board, AD/DA(10Bit) and RF(2.4GHz) board for wireless access. It is also can be utilized for the embedded system design with IEEE 802.11b/g Access Point(Option: IEEE 802.11a/b/g) test due to the Embedded Linux. Also, the developed system is possible to test and verify the radio access technology, Modem(OFDM etc) and IP(Intellectual Property) circuit. And make the most use of the system, we search for a expansion to that home and mobile healthcare, wellness service application.

Bandpass Filter Using Folded Substrate Integrated Waveguide Structure (접힌 기판 집적형 도파관 구조를 이용한 대역통과 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.965-970
    • /
    • 2018
  • In this paper, the transition of the folded substrate integrated waveguide (FSIW) using two substrates is suggested and applied to the bandpass filter. The FSIW has similar characteristics with the SIW and can be reduced the width of the SIW. The transition between the FSIW to the microstrip is designed by using shorted quarter wavelength line. Also, the bandpass filter is designed by using the FSIW and the elliptic lowpass filter of 5 section. Fabricated bandpass filter has the center frequency of 5.75 GHz and the bandwidth of 33.2%. Also, the insertion loss and return loss at the center frequency are 0.63dB and 19.1dB, respectively.

Stacked LTCC Band-Pass Filter for IEEE 802.11a (IEEE 802.11a용 적층형 LTCC 대역통과 여파기)

  • Lee Yun-Bok;Kim Ho-Yong;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.154-160
    • /
    • 2005
  • Microwave Otters are essential device in modem wireless systems. A compact dimension BPF(Band-pass Filter) for IEEE 802.11a WLAN service is realized using LTCC multi-layer process. To extrude 2-stage band-pass equivalent circuit, band-pass and J-inverter transform applied to Chebyshev low-pass prototype filter. Because parallel L-C resonator is complicate and hard to control the inductor characteristics in high frequency, the shorted $\lambda/4$ stripline is selected for the resonator structure. The passive element is located in the different layers connected by conventional via structure and isolated by inner GND. The dimension of fabricated stacked band-pass filter which is composed of six layers, is $2.51\times2.27\times1.02\;mm^3$. The measured filter characteristics show the insertion loss of -2.25 dB, half-power bandwidth of 220 MHz, attenuation at 5.7 GHz of -32.25 dB and group delay of 0.9 ns at 5.25 GHz.

Design and Implementation of Large Tag Data Transmission Protocol for 2.4GHz Multi-Channel Active RFID System (2.4GHz 다중채널 능동형 RFID시스템을 위한 대용량 태그 데이터 전송 프로토콜의 설계 및 구현)

  • Lee, Chae-Suk;Kim, Dong-Hyun;Kim, Jong-Doek
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.217-227
    • /
    • 2010
  • To apply active RFID technology in the various kinds of industry, it needs to quickly transmit a large amount of data. ISO/IEC 18000-7 standard uses the 433.92MHz as single channel system and its transmit rate is just 27.8kbps, that is insufficient for a large amount of data transmission. To solve this problem, we designed a new data transmission protocol using 2.4GHz band. The feature of designed protocol is not only making over 255bytes data messages using the Burst Read UDB but also efficiently transmitting it. To implement this protocol, we use Texas Instruments's SmartRF04 develop kit and CC2500 transceiver as RF module. As an evaluation of 63.75kbytes data transmission, we demonstrate that transmission time of Burst Read UDB has improved as 17.95% faster than that of Read UDB in the ISO/IEC 18000-7.

Design and Fabrication of V-band Up-Mixer and Drive Amplifier for 60 GHz Transmitter (60 GHZ 통신 시스템 송신단의 구현을 위한 V-band MIMIC 상향 주파수 혼합기와 구동 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Sang-Jin;Ko Du-Hyun;An Dan;Lee Mun-Kyo;Lee Seong-Dae;Lim Byeong-Ok;Cho Chang-Shik;Baek Yong-Hyun;Park Hyung-Moo;Rhee Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.339-342
    • /
    • 2004
  • 본 논문은 밀리미터파 대역 무선통신 시스템 송신부의 응용을 위해 CPW 구조를 이용하여 V-band용 상향 주파수 혼합기와 2단 구동증폭기를 설계$\cdot$제작하였다. 능동소자는 본 연구실에서 제작한 $0.1{\mu}m$ 게이트 GaAs Pseudomorphic HEMTs(PHEMTs)를 사용하였으며 입$\cdot$출력단은 CPW를 사용해 정합 회로를 설계하였다. 제작된 상향 주파수 혼합기는 LO power 5.4 dBm, 2.4 GHz IF 신호를 -10.25 dBm으로 입력하였을 때 Conversion Loss 1.25 dB, LO-to-RF Isolation은 58 GHz에서 13.2 dB의 특성을 나타내었다 2단 구동 증폭기는 측정결과 60 GHz에서 S21 이득 13 dB, $58\;GHz\;\~\;64\;GHz$ 대역에서 S21 이득 12 dB 이상을 유지하는 광대역 특성을 얻었고 증폭기의 Pl dB는 3.8 dBm, 최대 출력전력은 6.5 dBm의 특성을 얻었다.

  • PDF

Wide Bandwidth Circularly Polarized Aperture Coupled Microstrip Antenna using Cross-slot (십자 슬롯을 이용한 광대역 원형편파 적층 개구결합 마이크로스트립 안테나)

  • 양태식;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.748-754
    • /
    • 2000
  • A novel single feed wide band CP stacked microstrip antenna using crossed slots has been designed, fabricated and measured. For the single rediating element the designed 10dB return loss bandwidth is 34.5%99.45~13.54 GHz), 3dB axial ratio bandwidth is 18.7%(11.17~13.39GHz), and 6 dB gain bandwidth is 29%(10.21~13.64GHz). For the 2$\times$2 array designed using a sequential rotation method, the 10dB return loss bandwidth is 35.9%(9.69~13.94GHz), 3dB axial ratio bandwidth is 34.6GHz (9.93~14.03GHz), and 6dB gain bandwidth is 27.4%(10.35~13.6GHz). For the fabricated 8$\times$8 array antenna, the 10dB return loss bandwidth is 27.3%(10.17~13.41GHz), 3dB axial ratio bandwidth is 27.9GHz(10.1~13.4GHz), and the radiation pattern is good agreement with theory. This antenna can be used for broadband applications for communications or broadcasting in Ku band.

  • PDF