• Title/Summary/Keyword: 2.1GHz band

Search Result 1,179, Processing Time 0.025 seconds

Current Status of Ocean Satellite Remote Sensing Data and Its Distribution (해양의 인공위성 자료 현황과 배포 소개)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.51-55
    • /
    • 2007
  • As for satellite programs, the multipurpose satellite 1(KOMPSAT-1) was successfully launched on Dec. 21, 1999 and operated for three years. It is still properly operated even though its life cycle was ended. The development of KOMPSAT-2 (Korea Multipurpose Satellite-2) is near completion and the development of KOMPSAT-3, KOMPSAT-5 and COMS (Communication, Ocean, Meterological Satellite) are proceeding swiftly. In KORDI(Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2000. Ansan(the headquarter of KORDD has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified antenna and RF. Antenna is designed to be ${\emptyset}$ 9m cassegrain antenna which has 19.35 $G/T(dB/^{\circ}K)$ at 1.67GHz, RF module, is divided into LNA(Low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem The existing building is re-designed and classified for the KOSC operation concept; computing room, board of electricity, data processing room, operation room Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet, and it is also being considered constructing outer data distribution system as a web hosting service for to offering received data to user under an hour.

  • PDF

A design method for optical fiber filter of lattice structure (격자형 광파이버필터의 설계에 관한 연구)

  • 이채욱;문병현;김신환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1248-1256
    • /
    • 1993
  • The propagation and delay properties in opical fiber are particularly attractive because digital signal processing and conventional analog signal processing techniques such as those using surface acoustic wave devices are limited In their usefulness for signal bandwidth exceeding one or two GHz, although they are very effective at lower frequencies. Since an accurate, low loss and short time delay elements can be obtained by using such an optical fiber, optical signal precessing has attracted much attention for high speed and broad-band signal precessing in particular channel separation filtering for optical FDM signals. In this paper, we consider a coherent optical lattice filter, which uses coherent light sources and consists of directional couplers and optical fiber delay elemnts. The optical fiber fitters are more restricted than the usual digital filters. The reasons are as follows. 1) the coupling coefficients of directional couplers are restricted to the number between 0 and 1. 2) optical signal E(complex amplitude) is divided into J If-$\boxUl$ and J L/7$\div$$\boxUl$ at the directional coupler. Considering these restrictions and in this case all the coupling coefficients of summing and branching elements are set to be equal, we have given design formulae for optical lattice filter, which make the best use of optical signal energy.

  • PDF

A Study on the Design and Fabrication of Diplexer Using H-plane T-junction for KOREASAT-III Transponder (자계면 T-접합을 이용한 무궁화 III호 위성체용 다이플렉서의 설계 및 제작에 관한 연구)

  • 이용민;홍완표;신철재;강준길;나극환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.582-593
    • /
    • 1999
  • This paper presents the design and fabrication of the diplexer for a KOREASAT-III Ka-band satellite transponder. The transmission characteristics of the diplexer is analyzed by calculating the generalized scattering matrix using mode matching method. It is composed of 2 bandpass filters, coupled with H-plane T-junction having symmetrical inductive iris and E-plane metal insert structures. Compared with the size and weight of the Rx and Tx filter loaded with a transponders respectively, those of the diplexer can be effectively reduced. In a high power transmission, the variation of the filter characteristics is minimized by the scheme that irises are extended to the exterior of H-plane of the waveguide. This scheme needs no extra heat sinks for dissipating high power. The diplexer is designed to improve the simplification, durability and reliability by eliminating tuning screws, which have been used to compensate for the characteristics of fabricated filters. The bandpass filters of the diplexer show the insertion loss of less than 1.2 dB and the return loss in excess of 15 dB. The isolations of more than 65 dB have been achieved between Rx and Tx filter.

  • PDF

Fabrication of a High-performance Oscillator with a Tunable High-Q HTS $YBa_2Cu_3O_{7-\delta}$ Resonator (High-Q $Yba_2Cu_3O_{7-\delta}$ 고온초전도체 공진기를 이용한 주파수 튜닝이 가능한 고성능 발진기 제작)

  • Yang Woo Il;Lee Jae Hun;Hur Jung;Lee Sang Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.63-70
    • /
    • 2005
  • We investigated the phase noise of an oscillator with a extremely high-Q resonator used as the resonant element. A TE$_{011}$ mode rutile-loaded resonator with high-temperature superconductive (HTS) $YBa_2Cu_3O_{7-\delta}$(YBCO) films used as the endplates is prepared for this purpose. At 23.5 K, the unloaded Q and the loaded Q are 863000 and 180000, respectively. The phase noise of -104.8 dBc/Hz at 1 KHz offset was observed for the oscillator having a resonator with $Q_{L}$ =180000 at the $TE_{01\delta$ mode resonant frequency of 8.545 GHz at 23.5 K Such oscillators with very low phase noise are expected to be used for building up communication systems capable of efficient use of the frequency band and high-speed data transmission as well as for Doppler radars. Frequency tuning could be realized for the resonator by using a piezoactuator Applicability of the tunable rutile resonator for fabricating tunable oscillators of high performances is discussed.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.

Dielectric Waveguide Filters Design Embedded in PCB Substrates using Via Fence at Millimeter-Wave (밀리미터파 대역에서 Via Fence를 이용한 PCB 기판용 유전체 도파관 필터 설계)

  • 김봉수;이재욱;김광선;강민수;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, the implementation and embedding method of the existing air-filled waveguide-filters at millimeter-wave on general PCB substrate is introduced by systematically inserting the vias inside waveguide and mathematically manipulating the simple equations obtained ken the classical circular-post waveguide filter design. All the metal structures placed vertically such as side wall fur perfect ground plane and circular-post for signal control in the air-filled WR-22 waveguide are replaced with several types of via for constructing the bandpass-filter. Side wall and poles inside waveguide are realized by placing a series array of via and tuning the via diameter. The lengths of x, y, z axis are reduced in proportion to root square of employed substrate dielectric constant and especially the length of z axis can be more reduced due to the characteristics of the wave propagation. Because the mass production on PCB is possible without fabricating a large-scaled metal waveguide of WR-22 as input/output ports at millimeter-wave regime, the manufacturing cost is reduced considerably. Finally, when using multilayer process like LTCC for small-sized module, it is one of advantages to use only one layer f3r the filter fabrication. To evaluate the validity of this novel technique, order-3 Chebyshev BPF(Bandpass-Filter) centered at 40 GHz-band with a 2.5 % FBW (Fractional Bandwidth) were used. The employed substrate has relative dielectric constant of 2.2 and thickness of 10 mil of Rogers RT/Duroid 5880. Accroding to design and measurement results, a good performance of insertion loss of 2 ㏈ and return loss of -30 ㏈ is achieved at full input/output ports.

A Study on Validation of the Shielding Effectiveness Measurement Method of the Concrete Containing Electric Arc Furnace Oxidizing Slag (전기로산화슬래그를 활용한 콘크리트의 차폐효과 측정 방법의 유효성 검증 연구)

  • Jang, Hong-Je;Lee, Han-Hee;Choi, Hyo-Sik;Song, Tae-Seung;Cho, Won-Seo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • In this paper, methods for manufacturing shielding concrete by recycling steelmaking slag discarded as industrial waste and measuring the shielding effectiveness of the shielding concrete were studied. By comparing the result of shielding effectiveness measurement of this concrete block with shielding effectiveness measurement of the structure constructed with this concrete, the measurement system for measuring shielding effectiveness of the concrete block was verified. The size of the concrete stru ctu re is 2.9 × 2.9 × 3.4m and the concrete block is 0.3 × 0.3 × 0.2m. The frequ ency band u sed for mesu rement is 600MHz - 2GHz, the types of concrete u sed to measu re the shielding effectiveness are general concrete and concrete containing electric arc furnace oxidizing slag. In the case of the concrete structure, reinforcing rebars are installed at intervals of 15cm for stru ctu ral safety, as the frequ ency increase, the electromagnetic wave properties of rebars gradu ally decreased, there was a slight difference in the measurement results. In conclusion, the measurement result of shielding effectiveness of the concrete block is similar to the result of the concrete structure. It is thought that it can be sufficiently utilized for electromagnetic wave engineering design, and the concrete shielding effectiveness measurement system using standard specimens was verified.

A Study on the Electromagnetic Wave Absorption Properties by the Composition Ratio and Sintering Condition of NiCuZn Ferrite (NiCuZn 페라이트의 조성 및 소결조건에 따른 전자파흡수 특성에 관한 연구)

  • 이영구;박찬규;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.994-1000
    • /
    • 2001
  • With the development of electromagnetic communication technology and increased use of electromagnetic wave, the countermeasure of EMI(Electromagnetic Interference) becomes more important socially, and interest for the electromagnetic wave absorber has also increased. In this paper, we have studied characteristics of frequency dependency on complex permittivity and complex permeability according to the changes of composition rate and sintering temperature of NiCuZn ferrite also known as electromagnetic wave absorber and further looked into effect of electromagnetic wave absorption properties. From the measurement where the composition of $Fe_2O_3$ and ZnO of NiCuZn ferrite was fixed at 49 and 34 mol% respectively while composition of NiO and CuO has been varied at each test, we found out that Initial permeability and permittivity were high and the absorbing ability of electromagnetic wave recorded best with $loss tangent(=\mur"/\mur')$ displays more than 1 within the frequency band of 2MHz~9.5MHz when the composition ratio of NiO was ranged around 8.5~9.5 mol% and the sintering temperature was $1080^{\circ}C$.TEX>.

  • PDF

Performance Analysis of Sensor Systems for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Jo, Jung Hyun;Park, Jang-Hyun;Chung, Taejin;Park, Jaewoo;Jeon, Hocheol;Yun, Ami;Lee, Yonghui
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.303-314
    • /
    • 2017
  • With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a $1-m^2$ radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.