• 제목/요약/키워드: 2.1GHz band

검색결과 1,179건 처리시간 0.025초

Dual-Band Antenna Design for LTE/Wi-Fi for Maritime Broadband Communication (해상 광대역 통신을 위한 LTE/Wi-Fi용 이중대역 안테나 설계)

  • Oh, Mal-Geun
    • Journal of Advanced Navigation Technology
    • /
    • 제22권6호
    • /
    • pp.665-669
    • /
    • 2018
  • In this paper, we design an antenna for LTE / Wi-Fi communication that operates in 2.65 GHz and 5 GHz band for small-sized broadband communication antenna that can be used in the sea. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. In addition, we designed a microstrip antenna using CST Microwave Studio 2014 program that can design 3D. Simulation results show that the reflection lossis -12.712 dB at 2.65 GHz and -16.583 dB at 5 GHz. The gain was 1.738 dBi at 2.65 GHz and 3.284 dBi at 5 GHz. In this paper, we propose a dual-band antenna for LTE / Wi-Fi, which can be used in maritime environments, which is worse than terrestrial communication, because of differences in communication speed and communication stability compared with those used on land.

Tri-Band Folded Monopole Antenna Design with MNG Single Cell Metamaterial Loading (MNG 단일셀 메타매질 부하를 갖는 삼중대역 폴디드 모노폴 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • 제22권1호
    • /
    • pp.127-135
    • /
    • 2018
  • This paper was studied the tri-band folded monopole antenna design with Mu-negative metamaterial unit cell, which operates at 700 MHz UHD broadcast band and 2.45 GHz/5 GHz WiFi band. The MNR metamaterial is fabricated by forming a capacitor on the backside of the antenna substrate and connecting it to the ground plane through a strip line and a via hole so that a single cell can operate in the MZR (Mu zero resonator). Through this, the resonance point can be controlled to resonate in the zero mode in 700 MHz band, and the bandwidth is improved. Experimental results show that the 10dB bandwidth and gain are 309 MHz (41.2%) and 5.298 dB at the first resonance point, and the 10dB bandwidth and gain at the second resonance point are 821.9 MHz (33.5%) and 2.7840 dB respectively. At the third resonance point, the gain and bandwidth were 1.1314 GHz (20.6%) and 2.9484 dB respectively. We confirmed that the resonance point with theoretical value is in agreement with experimental value. And the radiation pattern is generally omnidirectional, and it has been confirmed that the radiation pattern is good in both forward and backward directions at 0.75 GHz and 2.45 GHz, and has a radiation pattern with multiple lobes at 5.5 GHz.

GPS and Wireless LAN Bandpass Filter based on LTCC (LTCC를 이용한 GPS와 WLAN 대역통과 여파기)

  • Kim, Young;Yun, Jeong-Ho
    • Journal of Advanced Navigation Technology
    • /
    • 제16권2호
    • /
    • pp.227-233
    • /
    • 2012
  • This paper presents a bandpass fitler of GPS and WLAN band based on LTCC. The structure of bandpass fitler consists of a Butterworth lowpass fitler and highpass filter using CRLH (Composite Right/Left-Handed) transmission line. Using green sheet with dielectric constant 7.2, we fabricated the bandpass filter that satisfied GPS and WLAN band characteristics. We are implemented the bandpass filter at center frequency 1.5 GHz (GPS) and 2.4 GHz (WLAN). Its insertion loss are 1.66 dB at GPS and 3.20 dB at WLAN respectively.

A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes

  • Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • 제16권3호
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, a frequency tunable double band-stop resonator (BSR) with voltage control by varactor diodes is suggested. It makes use of a half-wavelength shunt stub as its conventional basic structure, which is replaced by the distributed LC block. Taking advantage of the nonlinear relationship between the frequency and electrical length of the distributed LC block, a dual-band device can be designed easily. With two varactor diodes, the stop-band of the resonator can be easily tuned by controlling the electrical length of the resonator structure. The measurement results show the tuning ranges of the two operating frequencies to be 1.82 GHz to 2.03 GHz and 2.81 GHz to 3.03 GHz, respectively. The entire size of the resonator is $10mm{\times}11mm$, which is very compact.

Ultra-Wideband Antenna Having a Frequency Band Notch Characteristic (주파수 대역 저지 특성을 갖는 초광대역 안테나)

  • Choi Woo-Young;Jung Ji-Hak;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제16권2호
    • /
    • pp.199-203
    • /
    • 2005
  • In this paper, a novel compact and frequency band-notch antenna for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows good impedance bandwidth for ultra-wideband but has band notch characteristic for the frequency band of $5.15\~5.825\;GHz$ limited by IEEE 802.1la and HIPERLAN/2. To achieve both properties of wide band and band notch, the techniques of a concaved ground plane and inserted U-shaped thin slot into planar radiator are used respectively. A manufactured antenna satisfied VSWR<2 for the frequency band of $2.95\~11.7\GHz$ except the limited band of $4.92\~5.866\;GHz$.

LTE Spectrum Policy: Focused on the OECD 12 Countries (이동통신 LTE 주파수 정책: 주요국 사례를 중심으로)

  • Jun, Soo-Yeon;Jeong, In-Jun
    • Journal of Digital Convergence
    • /
    • 제12권8호
    • /
    • pp.1-18
    • /
    • 2014
  • Recently, many of the mobile network operators or telcos are introducing the LTE service in order to effectively cope with an explosive increasing mobile traffics due to an expansion of the use of smart phones. The 1.8GHz, 2.6GHz, and 800MHz band classes are most widely used for LTE. In particular, the 1.8GHz band class is the most useful one in terms of the reusability of the existing (2G) network, global harmonization, bandwidth, eco-system of equipments and devices, and so on. In recent years, major countries in the world have allocated the 1.8GHz band spectrum in a wide bandwidth unit suitable for the upcoming LTE-Advanced service. This paper surveyed the 1.8GHz band spectrum allocation policies of the 12 OECD countries, including Republic of Korea. From the survey, we have found that they rebuilt or refarmed the existing holders' bands, recovered the public (i.e., military)-use bands, and allocated the bands in a wide bandwidth and in an equal or similar size.

A Microwave Balun by Using Microstrip-Slot Lines (마이크로스트립-슬롯트 선로에 의한 광대역 마이크로파 Balun)

  • Yun, Yeong-Cheol;Jang, Ik-Su;Park, Gi-Su
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제18권6호
    • /
    • pp.23-29
    • /
    • 1981
  • By using a slot-line in combination with microstrip lines, a coplanar wide-band balun is designed and fabricated. The slot-line of balun junction is compensated to be operated in C-band(4~8GHz), and therefore the results are agreement with theoritical prediction. Experimental data are given for a 3-section Chebyshev transformer-matched balun with a balanced-to-unbalanced line impedance ratio of 2 : 1. A bandwidth from 3.5GHz to 7.0GHz is obtained with V.S.W.R. of below 1.2 : 1. Maximum insertion loss is measured as 0.9dB, and the phase difference varies linearlly within 180$^{\circ}$$\pm$5$^{\circ}$.

  • PDF

A Printed, Wideband Folded Monopole Antenna Coupling with a Parasitic Inverted-L Element for Bluetooth, WiMAX and UWB Systems (Bluetooth, WiMAX, UWB 시스템용 역 L형 무급전 소자 결합 프린트형 광대역 폴디드 모노폴 안테나)

  • Kim, Ki-Baek;Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제22권11호
    • /
    • pp.1101-1110
    • /
    • 2011
  • This paper presents a printed, wideband folded monopole antenna for laptop and tablet computer applications. The proposed antenna is designed to cover bandwidth(2.3~10.6 GHz) of Bluetooth, WiMAX, and UWB system by using the printed folded monopole antenna having asymmetrical line width coupling with a parasitic inverted- L element. Also, wireless LAN band(5.15~5.85 GHz) which interferes with UWB system is rejected by inserting half-wavelength open stub in the folded monopole antenna. -10 dB bandwidth of the fabricated wideband antenna is 2.27~10.6 GHz (4.7:1) and -10 dB band-rejected bandwidth is measured as 700 MHz(5.15~5.85 GHz, 12.72 %). The gain and efficiency of the antenna except for the rejected band are higher than 3.93 dBi and 91.89 % and are measured as -2 dBi and 14.65 % at 5.5 GHz which is band-rejected frequency. The size of the antenna is suitable to install for small space of tablet and laptop computers as 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$ is free space wavelength at 2.3 GHz). Therefore, we verified that the designed antenna is appropriate for wideband antenna of tablet and laptop PC applications.

A Study on the Design and Implementation of Ku-Band Frequency Synthesizer by using PLL (PLL을 이용한 Ku-Band 주파수 합성기 설계 및 제작에 관한 연구)

  • 이일규;민경일;안동식;오승협
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제19권10호
    • /
    • pp.1872-1879
    • /
    • 1994
  • The design and implementation of Ku-Band frequency synthesizer was accomplished by the use of PLL and frquency multiple method. Design procedure and operation characteristics of PLL circuit were analyzed on the basis of control theory to synthesize about 1 GHz frequency which should be stable. By connecting frequency doubler and frequency eighth multiplier to the designed PLL circuit in series, Ku-Band frequency was synthesized. The validity of design method of Ku-Band frequency synthesizer was verified through experimental results.

  • PDF

Development of a Receiver Downconverter Module for Ka-band Satellite Payload (Ka-Band 위성중계기용 수신하향변환기 모듈 개발)

  • 장동필;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제14권1호
    • /
    • pp.68-74
    • /
    • 2003
  • This paper describes the design and the test results of the receiver-downconverter module for a Ka-band Satellite Payload. The developed module is not only a downconverter that convert the signal of 30.6 GHz∼31.0 GHz to the signal of 20.8 GHz∼21.2 GHz but also is a receiver that has the function of low noise amplification in the front stage. It has been fabricated and tested by the qualified satellite component manufacturing process and it shows the best performance of the receiver-downconverter modules operating at Ka-band frequency up to date. The module has the performance of 1.9 dB-NF, 55 dB-Gain, and 58 dBc-C/I3 fur the two tone signals of -59 dBm input power respectively at ambient temperature. It is a small and light module with the size of 93 mm${\times}$84 mm${\times}$26 mm and the weight of 240 g.