• 제목/요약/키워드: 2.1GHz band

검색결과 1,186건 처리시간 0.029초

A study on branch type Inverted-F structure antenna with dual-band operation (듀얼밴드를 갖는 브랜치타입 인버티드 F구조 안테나에 관한 연구)

  • Park, Seong-Il;Ji, Yu-Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제12권1호
    • /
    • pp.39-45
    • /
    • 2008
  • In this parer a branch type inverted-F structure antenna with dual-band is proposed. The proposed antenna has a size of about $70mm{\times}35mm{\times}0.8mm$ with a total mobile phone PCB for support and patch of about $12mm{\times}8mm{\times}0.8mm$. This antenna is designed to operate of frequency 2.45GHz and 5.8GHz, Bandwidth at each other frequency is satisfied $83MHz{\sim}100MHz$ in frequencies. Also, The designed and fabricated dual-band antenna for 2.45GHz, 5.8GHz have a gain between 2.0dBi and -1.0dBi at all bands.

Frequency Reconfigurable Antenna for Multi Mode & Multi Band (MMMB) Communication Systems (셀룰러 및 커낵티비티 대역 통합용 동시동작모드 주파수 재구성 안테나)

  • Park, Se-Hyun;Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제10권6호
    • /
    • pp.1170-1174
    • /
    • 2009
  • Two frequency-reconfigurable antennas have been designed and combined in a space with limited volume, i.e., 40mm ${\times}$ 20mm ${\times}$ 6mm. Each antenna can be reconfigured to operate at different frequency bands depending on the state of an embedded switch, which is implemented using a PIN diode. The first antenna can be switched between 0.82GHz ${\sim}$ 0.96GHz band (GSM/ CDMA) and 1.7GHz ${\sim}$ 2.17GHz band (DCS/ PCS/ WCDMA), which are cellular bands. The second antenna can be switched between 3.4GHz ${\sim}$ 3.6GHz band (mWiMax) and 2.3GHz ${\sim}$ 2.5GHz, 5.15GHz ${\sim}$ 5.35GHz bands (WiBro/ WLAN 11a/b/g/n), which are connectivity bands. The proposed combined antenna operates both over cellular bands and connectivity bands concurrently. The choice of the operation bands is made independently by the states of the two switches.

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

  • Lee, Hyeonjin
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1081-1085
    • /
    • 2015
  • In this paper a printed pair dipole antenna with double tapered microstrip balun for wireless communications is proposed. The proposed antenna consists of a pair arm of different sizes that is branched microstrip line and microstrip line with the ground plane on opposite side of the dielectric substrate plane. The proposed antenna is matched between the ground plane to the microstrip line by double tapered microstrip balun. This antenna obtains multi-band radiation frequency band. The impedance bandwidths for a reflection coefficient of VSWR ≤ 2 are about 1.01 GHz (2.35~3.336 GHz), 1.56 GHz (4.7~6.26 GHz) and 1.15GHz (6.85~8.0[GHz]). Additionally, the measurement peak gain is about 3.6 dBi. The proposed antenna is able to support wireless communication applications.

Design and Fabrication of the Triple Band(DCS, PCS, UPCS) Internal Chip Antenna (내장형 트리플(DCS, PCS, UPCS) 칩 안테나 설계 및 제작)

  • Park, Seong-Il;Park, Sung-Ha;Ko, Young-Hyuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제13권7호
    • /
    • pp.1261-1266
    • /
    • 2009
  • In this paper, triple band mobile chip antenna for DCS(1.71${\sim}$1.88GHz) / PCS(1.75${\sim}$1.87GHz) / UPCS(1.8S${\sim}$1.99GHz) on PCB Layout is designed. To analyze the characteristics of the designed antenna, we used commerical simulation tool(HFSS). Triple and wide band characteristic could be realized the measured bandwidth(V.S.W.R<2.0) of the designed antenna operated in 1.71GHz${\sim}$1.99GHz. The size of the designed antenna is about 19mm${\times}$4mm${\times}$1.6mm, narrow bandwidth which is a defect of chip antenna is improved. And its experimental results were a good agreement with simulation performance.

A Study on Low Noise Frequency Synthesizer Design with Compact Size for Multi-Band (소형 다대역 저잡음 주파수 합성기 설계에 관한 연구)

  • Kim, Taeyoung;Han, Jonghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제20권5호
    • /
    • pp.673-680
    • /
    • 2017
  • In the proposed paper, we designed low noise frequency synthesizer with compact size for Multi-Band. The proposed frequency synthesizer consists of fundamental frequency band(2 GHz) and harmonic frequency band(4 GHz). To improve the phase noise and spurious level of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise and design the multi-band's structure. The implemented frequency synthesizer reduce both the phase noise and spurious level. The phase noise is -92.17 dBc/Hz at 1 kHz frequency offset in 2 GHz and -90.50 dBc/Hz at 1 kHz frequency offset in 4 GHz. All spurious signals including fundamental frequency are suppressed at least 20 dBc than the second harmonic frequency.

Compact Dual-Band Bandpass Filter Using U-Shaped Stepped-Impedance Resonators with Parallel Coupled Structures

  • Sung, Gyuje
    • Journal of electromagnetic engineering and science
    • /
    • 제18권2호
    • /
    • pp.73-77
    • /
    • 2018
  • This paper proposes a dual-band bandpass filter using stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with parallel coupled lines (PCLs) that have interdigital and comb-line shorted ends. The central PCLs build an upper passband and a transmission zero, and the two U-shaped SIRs build a lower passband. Four resonators and coupling structures are theoretically analyzed to derive its scattering parameters. A novel dual-band bandpass filter is designed and fabricated using the induced scattering characteristics. The measured results show that the fabricated dual-band bandpass filter has an insertion loss of less than 1.02 dB in the lower band of 2.45 GHz and of 3.01 dB in the upper band of 3.42 GHz, and a band-to-band isolation of more than 40 dB, from 3.14 to 3.2 GHz.

A Dual band CMOS Voltage Controlled Oscillator of an arithmetic functionality with a 50% duty cycle buffer (50%듀티 싸이클 버퍼를 가진 산술 연산 구조의 이중 대역 CMOS 전압 제어 발진기)

  • 한윤철;김광일;이상철;변기영;윤광섭
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제41권10호
    • /
    • pp.79-86
    • /
    • 2004
  • This paper proposes a dual band Voltage Controlled Oscillator(VCO) with a standard 0.3${\mu}{\textrm}{m}$ CMOS process to generate 1.07GHz and 2.07GHz. The proposed VCO architecture with 50% duty cycle circuit and a half adder(HA) was capable of producing a frequency two times higher than that of the conventional VCOs. The measurement results demonstrate that the gain of VCO and power dissipation are 561MHz/V and 14.6mW, respectively. The phase noises of the dual band VCO are measured to be -102.55dBc/Hz and -95.88dBc/Hz at 2MHz offset from 1.07GHz and 2.07GHz, respectively.

Development of a Two-Stage High Gain D-Band MMIC Drive Amplifier Using $0.1{\mu}m$ Metamorphic HEMT Technology ($0.1{\mu}m$ Metamorphic HEMT를 이용한 고이득 D-Band MMIC 2단 구동증폭기 개발)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제45권12호
    • /
    • pp.41-46
    • /
    • 2008
  • We report a high gain D-band(110 - 140 GHz) MMIC drive amplifier based on $0.1{\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The amplifier shows an excellent $S_{21}$ gain characteristic greater than 10 dB in a millimeterwave frequency of 110 GHz, Also the amplifier has good reflection characteristics of a $S_{11}$ of -3.5 dB and a $S_{22}$ of -6.5 dB at 110 GHz, respectively The high performances of the MMIC drive amplifier is mainly attributed to the characteristics of the MHEMTs exhibiting a maximum transconductance of 760 mS/mm, a current gain cut-off frequency of 195 GHz and a maximum oscillation frequency of 391 GHz.

Analysis of Wireless Signal Strength in Indoor Environment with Film-Type Dual-Band Frequency Selective Structure (필름형 이중 대역 주파수 선택 구조가 적용된 실내 환경의 무선신호강도 분석)

  • Cho, Sung-Sil;Lee, Sang-Hwa;Yoon, Sun-Hong;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, we propose a film-type dual-band frequency selective structure for improving the wireless communication environment in a building. The proposed frequency-selective structure is a miniaturized structure that can control the resonant frequencies of 2.4 GHz and 5 GHz dual band through simple design parameters. We fabricated the frequency-selective surface by screen printing using conductive ink on a thin transparent film and confirmed its performance by measurement. We analyzed the attenuation performance of the unnecessary signal from the outside when the frequency-selective structure designed using the software to analyze the propagation environment performance is applied to the building. To verify the analytical results, the signal strength of the indoor environment was measured by applying the frequency-selective film fabricated on the inner wall of the actual building. The measurement results show that the dual-band frequency-selective film has 29.4 dB and 15.94 dB attenuation performance in the 2.4 GHz and 5 GHz, respectively.

LTE / WiMAX Dual Band Antenna Design for Ultra-wideband Communications (초광대역 통신용 LTE/WiMAX 이중대역 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.441-444
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / WiMAX is designed for UWB communication. The proposed antenna is designed for FR-4 (er = 4.3), 29[mm] x 45[mm], and can be used in the LTE frequency band of 1.82[GHz] and the WiMAX frequency band of 3.5[GHz]. Studio 2014 was used. The simulation results show 1.785[dB] at 1.82[GHz] and 1.720[dB] at 3.5[GHz]. S-parameters were also found to be less than -10dB (WSWR2: 1) in the desired frequency band. In order to achieve broadband, miniaturization, low cost and low loss, Width, length, width of transmission line, etc. were calculated. Therefore, it is considered that the applicable antenna can be applied satisfying the desired condition.

  • PDF