• Title/Summary/Keyword: 2-regular

Search Result 4,970, Processing Time 0.032 seconds

The Gallai and Anti-Gallai Graphs of Strongly Regular Graphs

  • Jeepamol J. Palathingal;Aparna Lakshmanan S.;Greg Markowsky
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.171-184
    • /
    • 2024
  • In this paper, we show that if G is strongly regular then the Gallai graph Γ(G) and the anti-Gallai graph ∆(G) of G are edge-regular. We also identify conditions under which the Gallai and anti-Gallai graphs are themselves strongly regular, as well as conditions under which they are 2-connected. We include also a number of concrete examples and a discussion of spectral properties of the Gallai and anti-Gallai graphs.

F-REGULAR RELATIONS

  • Song, Hyungsoo
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • We define the concept of a F-regular flow as a generalization of that of a F-proximal flow, and investigate its properties.

  • PDF

Generalized Binary Second-order Recurrent Neural Networks Equivalent to Regular Grammars (정규문법과 동등한 일반화된 이진 이차 재귀 신경망)

  • Jung Soon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.107-123
    • /
    • 2006
  • We propose the Generalized Binary Second-order Recurrent Neural Networks(GBSRNNf) being equivalent to regular grammars and ?how the implementation of lexical analyzer recognizing the regular languages by using it. All the equivalent representations of regular grammars can be implemented in circuits by using GSBRNN, since it has binary-valued components and shows the structural relationship of a regular grammar. For a regular grammar with the number of symbols m, the number of terminals p, the number of nonterminals q, and the length of input string k, the size of the corresponding GBSRNN is $O(m(p+q)^2)$ and its parallel processing time is O(k) and its sequential processing time, $O(k(p+q)^2)$.

  • PDF

CHOW GROUPS OF COMPLETE REGULAR LOCAL RINGS III

  • Lee, Si-Chang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper we will show that the followings ; (1) Let R be a regular local ring of dimension n. Then $A_{n-2}$(R) = 0. (2) Let R be a regular local ring of dimension n and I be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then [I] = 0 in $A_{n-3}$(R). (3) Let R = V[[ $X_1$, $X_2$, …, $X_{5}$ ]]/(p+ $X_1$$^{t1}$ + $X_2$$^{t2}$ + $X_3$$^{t3}$ + $X_4$$^2$+ $X_{5}$ $^2$/), where p $\neq$2, $t_1$, $t_2$, $t_3$ are arbitrary positive integers and V is a complete discrete valuation ring with (p) = mv. Assume that R/m is algebraically closed. Then all the Chow group for R is 0 except the last Chow group.group.oup.

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

P-STRONGLY REGULAR NEAR-RINGS

  • Dheena, P.;Jenila, C.
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.483-488
    • /
    • 2012
  • In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) $Na$ + P is an ideal of N for any $a{\in}N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills I + P = $I^2$ + P.